TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Welcome from the General Chair</td>
</tr>
<tr>
<td>3</td>
<td>Committees</td>
</tr>
<tr>
<td>4</td>
<td>Program at a Glance</td>
</tr>
<tr>
<td>5</td>
<td>Networking & Social Information</td>
</tr>
<tr>
<td>9</td>
<td>Speaker Information</td>
</tr>
<tr>
<td>10</td>
<td>Poster Sessions</td>
</tr>
<tr>
<td>12</td>
<td>Plenary Presentations</td>
</tr>
<tr>
<td>14</td>
<td>Sponsors</td>
</tr>
<tr>
<td>16</td>
<td>Future Meetings</td>
</tr>
<tr>
<td>17</td>
<td>Technical Sessions: Wednesday</td>
</tr>
<tr>
<td>32</td>
<td>Technical Sessions: Thursday</td>
</tr>
<tr>
<td>47</td>
<td>Technical Sessions: Friday</td>
</tr>
<tr>
<td>61</td>
<td>Session Chair Index</td>
</tr>
<tr>
<td>62</td>
<td>Author Index</td>
</tr>
<tr>
<td>66</td>
<td>Session Index</td>
</tr>
<tr>
<td>68</td>
<td>Master Track</td>
</tr>
</tbody>
</table>
Welkom to INFORMS Healthcare 2017 in downtown Rotterdam, Netherlands! Thank you for joining the INFORMS healthcare community on its first conference endeavor outside of North America. It is because of your participation, and the participation of your colleagues, that the biennial INFORMS Healthcare conferences have grown into leading meetings, where cutting edge practices and science are exchanged. We are grateful to and honored by the many participants from across the globe who have come to share their presentations, posters, papers, and practices, and look forward to an exciting conference!

You have come to Rotterdam, Netherlands, at a time when health and healthcare are main priorities in national and international policy agendas. Fortunately, many present policies build on recent achievements. Many of today’s newborns in developed countries are expected to live to the age of 100. Life expectancy in Africa has increased by almost 10 years since 2000. Further progress, however, cannot be taken for granted. The challenges of age and lifestyle-related conditions place increasing burdens on many of our societies and economies. Moreover, some countries face infectious disease outbreaks and humanitarian challenges.

Expectations of the potential that scientific advances in information technology and optimization methods hold to confront these challenges and continue progress are high. Robots, smart homes, smart wearables, smart pills, intelligence, algorithms, etc., should bring further improvement of health across the globe. Technologies that produce and use new data, Big Data, to improve health service operations through analytics will be presenting their work at the 2017 Healthcare Conference. The year 2017 is a moment in time with special opportunities for the INFORMS community to live up to expectations, solve challenges, and improve health. Our INFORMS Healthcare 2017 conference is a platform for this purpose—a platform to exchange ideas, present, learn, be inspired, and inspire.

We believe Rotterdam is an appropriate conference location, as it is rapidly earning itself a reputation for being a modern urban hotspot. A melting pot of 180 nationalities built around one of the world’s leading harbors. A city that was ranked as a top 10 city to visit in 2016 by Lonely Planet, with great art, architecture, and nightlife. An entrepreneurial city with a vibrant health service industry; home to the largest academic medical center in the Netherlands—Erasmus Medical Center. A driving force behind the highly esteemed Dutch Health System, ranked 1st in Europe since 2008 by the European Consumer Health Index.

We appreciate the importance the Municipality of Rotterdam and Erasmus University Rotterdam attach to hosting the conference, and all their support. The staff of Rotterdam Partners has been particularly supportive. Likewise, the INFORMS staff has also done a wonderful job to make the conference happen.

A special thanks goes out to our plenary guests Erik Gerritsen, Secretary General of the Dutch Ministry of Health, Welfare and Sport; Eric de Roodenbeke, President of the International Hospital Federation; and Gisele Roesems, Deputy Head, Unit ICT for Health & Wellbeing, DG Connect, European Commission, and to our plenary speakers Dimitris Bertsimas, MIT, and INFORMS president Brian Denton, University of Michigan.

Moreover, we thank the HAS Sponsored Paper Competition chairs Sarang Deo and Greg Zaric; Poster Session chair Erwin Hans; Sponsored Session chairs Mehmet Ayvaci and Qingxia Kong; our local program chair Sandra Sulz; General Cluster chair Sanjay Mehrotra; and our Invited Session chairs Omid Nohadani, Mohsen Bayati, Julie Swann, Tarun Mohan Lal, Nan Kong, Vishal Ahuja, Hari Balasubramanian, Chaitra Gopalappa, Oguzhan Alagoz, Anil Aswani, and Diwakar Gupta. Without all of you, the conference program would never have become such a prominent display of the best the INFORMS Healthcare community has to offer.

We wish all participants a memorable conference and stay!

Edwin Romeijn | Program Chair Joris van de Klundert | Conference Chair
GENERAL CHAIR
- Joris van de Klundert
 Institute of Health Policy & Management Erasmus, University Rotterdam
 vandeklundert@bmg.eur.nl

PROGRAM CHAIRS
- Edwin Romeijn
 H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology
 edwin.romeijn@isye.gatech.edu
- Sandra Sulz
 Institute of Health Policy & Management, Erasmus University Rotterdam
 sulz@bmg.eur.nl

HAS STUDENT PAPER COMPETITION CHAIRS
- Sarang Deo
 Indian School of Business
 sarang.deo@isb.edu
- Greg Zaric
 Ivey Business School, University of Western Ontario
 gzaric@ivey.uwo.ca

ADVISORY COMMITTEE
- Jan Hazelzet
 Erasmus MC, Erasmus University Rotterdam
 j.a.hazelzet@erasmusmc.nl
- Vikram Tiwari
 School of Medicine, Vanderbilt University
 vikram.tiwari@vanderbilt.edu
- Christos Vasilakis
 School of Management, University of Bath
 c.vasilakis@bath.ac.uk

POSTER SESSION CHAIR
- Erwin Hans
 Faculty of Behavioural, Management & Social Sciences, University of Twente
 e.w.hans@utwente.nl

LOCAL COMMITTEE
- Kristiaan Glorie
 Department of Mathematics, Vrije Universiteit Amsterdam
 km.glorie@vu.nl
- Harwin de Vries
 Erasmus School of Economics, Erasmus U. Rotterdam
 hdevries@ese.eur.nl

SPONSORED SESSION CHAIRS
- Qingxia Kong
 Rotterdam School of Management, Erasmus U. Rotterdam
 q.kong@rsm.nl
- INFORMS Healthcare Applications Society:
 Mehmet U.S. Ayvaci
 The University of Texas at Dallas
 mehmet.ayvaci@utdallas.edu

INVITED SESSION CHAIRS
- Disease and Treatment Modeling:
 Omid Nohadani
 Department of Industrial Engineering & Management Sciences, Northwestern University
 nohadani@northwestern.edu
- Healthcare Data Analytics & Machine Learning: Mohsen Bayati
 Graduate School of Business, Stanford University
 bayati@stanford.edu
- Health and Humanitarian Systems:
 Julie Swann
 H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology
 julie.swann@isye.gatech.edu
- Health Information Technology & Management: Tarun Mohan Lal
 Mayo Clinic Rochester
 MohanLal.Tarun@mayo.edu
- Health Operations Management: Nan Kong
 Weldon School of Biomedical Engineering, Purdue University
 nkong@purdue.edu
- Vishal Ahuja
 Cox School of Business, Southern Methodist University
 vahuja@smu.edu
- Disparities in Health/Low & Middle Income Settings/Global Health:
 Hari Balasubramanian
 Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst
 hbalasubraman@ecs.umass.edu
- Chaitra Gopalappa
 Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst
 chaitrag@umass.edu
- Medical Decision Making: Oguzhan Alagoz
 Department of Industrial & Systems Engineering, University of Wisconsin-Madison
 alagoz@engr.wisc.edu
- Personalized Medicine: Anil Aswani
 Department of Industrial Engineering & Operations Research, University of California Berkeley
 aswani@ieor.berkeley.edu
- Public Health & Policy Making:
 Diwakar Gupta
 Department of Industrial & Systems Engineering, University of Minnesota
 guptad@umn.edu
TUESDAY, JULY 25
9am–6pm Registration De Doelen, Ground Floor

12:15pm Pre-Conference Field Trip (optional) Erasmus Medical Center Pick-up at De Doelen Main Entrance at 12:15pm

12noon–1:30pm Lunch Speaker: Dr. Eric de Roodenbeke & Dr. Erik Gerritsen Willem Burger Zaal

1:30–3pm Technical Session (TC) Various Locations

3–3:30pm Coffee Break Van der Mandele Zaal Foyer, First Floor

3:30–4:30pm Plenary: Dr. Brian Denton Willem Burger Zaal

WEDNESDAY, JULY 26
7:30am–5pm Registration Ground Floor, De Doelen

8:30–10am Technical Session (WA) Various Locations

10–10:30am Coffee Break Jurriaanse & Van der Mandele Zaal Foyer, First Floor

10:30–11:30am Welcome & Plenary: Dr. Dimitris Bertsimas Willem Burger Zaal

11:30am–12:30pm Lunch Break (on your own)

1–2:30pm Technical Session (WB) Various Locations

2:30–3:30pm Poster Sessions with Break Van der Mandele Zaal Foyer, First Floor

3:30–5pm Technical Session (WC) Various Locations

6–8pm Reception-Raderstoomboot De Majesteit Pick-up at De Doelen Main Entrance at 5:45pm

THURSDAY, JULY 27
7:30am–5pm Registration Ground Floor, De Doelen

8:30–10am Technical Session (TA) Various Locations

10–10:30am Coffee Break Van der Mandele Zaal Foyer, First Floor

10:30am–12noon Technical Session (TB) Various Locations

FRIDAY, JULY 28
7:30am–12noon Registration De Doelen, Ground Floor

8–9:30am Technical Session (FA) Various Locations

9:30–10am Coffee Break Van der Mandele Zaal Foyer, First Floor

10–11:30am Technical Session (FB) Various Locations

11:35am–1:05pm Technical Session (FC) Various Locations

SATURDAY, JULY 29
8:30am Post-Conference Field Trip (optional) Social Tour Amsterdam Pick-up at De Doelen Main Entrance at 8:30am

MASTER TRACK SCHEDULE
Inside Back Cover includes a convenient summary showing the tracks, times, and locations.
TUESDAY, JULY 25
- **Pre-Conference Field Trip (optional)**
 Participants had the option of registering for fabulous pre and post-conference field trips. If you pre-registered for a field trip you will receive a ticket in your registration pack. Buses will depart the De Doelen International Congress Centre, at the main entrance, Kruisplein 40. Buses will return to the De Doelen International Congress Centre following the field trips. Tickets will NOT be available to purchase on-site.

- **Breaks & Poster Sessions:**
 Van der Mandele Zaal & Jurriaanse Foyer

WEDNESDAY, JULY 26
- **Coffee Break**
 10–10:30am
 Van der Mandele Zaal & Jurriaanse Foyer

- **Plenary: Dimitris Bertsimas**
 10:30–11:30am
 Willem Burger Zaal
 Personalized Medicine: A Vision for Research and Education

- **Poster Sessions & Refreshments**
 2:30–3:30pm
 Van der Mandele Zaal & Jurriaanse Foyer

- **Welcome Reception**
 6–8pm
 Raderstoomboot De Majesteit
 Buses will depart the De Doelen International Congress Centre, at the main entrance, Kruisplein 40. Buses will return to the De Doelen International Congress Centre following the reception.

- **Boat Schedule**
 Trip through one of Europe's largest harbours. During the trip there will be luxurious hot and cold snacks, including the infamous Dutch bitterballen.
 - 6pm Welcome with a glass of Cava (Spanish champagne)
 - 6:30pm Departure
 - 7:45pm Return
 - 8pm End

THURSDAY, JULY 27
- **Coffee Break**
 10–10:30am
 Van der Mandele Zaal & Jurriaanse Foyer

- **Lunch Speakers:**
 Erik Gerritsen & Eric de Roodenbeke
 12noon–1:30pm
 Willem Burger Zaal
 The INFORMS Contribution for the Health Systems & Hospitals of the Future

- **Coffee Break**
 3–3:30pm
 Van der Mandele Zaal & Jurriaanse Foyer

- **Plenary: Brian Denton**
 3:30–4:30pm
 Willem Burger Zaal
 Operations Research in Medicine: Past, Present and Future

FRIDAY, JULY 28
- **Coffee Break**
 9:30–10am
 Van der Mandele Zaal & Jurriaanse Foyer

SATURDAY, JULY 29
- **Post-Conference Field Trip (optional)**
 Participants had the option of registering for fabulous pre and post-conference field trips. If you pre-registered for a field trip you will receive a ticket in your registration pack. Buses will depart the De Doelen International Congress Centre, at the main entrance, Kruisplein 40. Buses will return to the De Doelen International Congress Centre following the field trips. Tickets will NOT be available to purchase on-site.
DINNER & NIGHTLIFE

The center of Rotterdam is organized around two main streets—‘Blaak’ and ‘Coolsingel’—and is now known as the ‘Cool district.’ While these main streets themselves are not particularly interesting, there are many pleasant spots for lunch, drinks, dinner, and nightlife. Most can easily be reached from the venue on foot (less than a 15-minute walk). Alternatively, there is good public transport. For these short distances, taxis are also quite affordable. Here is a list of areas you may want to discover after conference hours:

– China Town. Very close to the venue: Westersingel, Kruiskade, Mauritsweg.

– ‘Witte de With’ De Witte de Withstraat (10-minute walk) is one of the busiest streets for nightlife in Rotterdam. It has terraces, variety or restaurants, also in side streets, popular with locals.

– Hofplein – Luchtsingel. The area at the end of the Coolsingel around the Hofplein is quickly developing. It hosts the Rotterdam Biergarten, where you can enjoy German beer and accompanying simple dinners (bratwurst, hamburger) in an urban-style Biergarten. The luchtsingel (‘air canal’) walkway starts here and brings you to the former railway station area ‘Station Hofplein’ or ‘De Hofbogen.’ A variety of shops, bars, and restaurants with up to two Michelin stars.

– A must visit in Rotterdam is ‘De Markthal’ (market hall), close to Blaak, at the east end of the central shopping area. It has many shops with great food to buy or try, small cafes, bars, and restaurants. Dinner and nightlife continue along the streets ‘Binnenrotte’ and ‘Meent,’ parts of which can be crowded, as they are popular with locals.

– From Markthal, you can take the pedestrian bridge crossing Blaak, called ‘Overblaak,’ which is home to the famous cubic houses (one of which can be visited). Descending on the other side, you enter another popular nightlife area, Oude Haven (Old Harbor), one of the few areas in Rotterdam with a historic feel. Another popular set of restaurants and some really good terraces can be found here.

– The forefront of city development lies south of the river Maas, in Rotterdam Zuid. Walk the Coolsingel to the south, toward the Erasmus Bridge and Rotterdam South skyline. At the end of the bridge turn right and you are in ‘Kop van Zuid.’ It hosts some good bars and restaurants, some with excellent river views. The west end is host to the former Holland America Line building, now in operation as a large Art Deco-style fish restaurant. The windy terrace offers great river views. From here, you can return to the city center with a spectacular water taxi ride.

– Two minutes farther south, across a pedestrian bridge, is the area off the Fenix Food Factory and Deliplein. The Food Factory offers a wonderful selection of local beer, cheese, charcuterie, bread, as well as international food, in a sustainable environment. It closes around 7pm most days. For dinner, exit toward Deliplein where there is an array of affordable restaurants from which to choose.

– The restaurant in the Euromast is 100 meters above the city and offers views from up to 180 meters above the city. Panoramic views even show The Hague. Stay late enough to enjoy the sunset, and subsequently watch the sky turn dark and city lights turn on.
SIGHTSEEING

- Rotterdam hosts the small historic area called Delfshaven, birthplace of the flying Dutchman, Piet Hein.

- Rotterdam hosts several museums, in particular, Boymans & Van Beuningen Kunsthal, and Netherlands Photo Museum (all within 10 minutes walking distance from the conference venue).

- A boat bus departs twice per hour in the direction of Kinderdijk, a famous UNESCO world heritage site for windmills.

- Delft is less than 15 minutes by train. In Delft you find Delft blue porcelain and a beautiful historic city center.

- The city of Gouda is home to the cheese of the same name. It is 20 minutes by train. Gouda has a historic city center and a cheese market.

- The Hague is also less than 20 minutes by train. Closely adjacent to each other in the city center you will find the historic Dutch parliament buildings, Museum Mauritshuis (paintings by Vermeer), and the Escher Museum. The Hague is also home to the International Court of Justice.

- The Netherlands offers wide sandy beaches. From Rotterdam Central Station you can take a train to the beaches of Hoek van Holland (30 minutes), or via The Hague to Scheveningen.

- Amsterdam is less than an hour by train (take the intercity direct train, which is slightly more expensive). A one-day walking tour of the center of Amsterdam is well worth the visit, especially if you hop on a canal boat tour once you get tired of walking. Amsterdam also hosts truly great museums, such as the Rijksmuseum and the Van Gogh Museum, and the Anne Frankhuis. If you want to visit any of the tourist hot spots, book tickets online and well in advance! Amsterdam is full of tourists.
ROTTERDAM WILL BE FULL OF LIFE IN JULY 2017

Unlike many other nearby Dutch cities, Rotterdam is not known for its authentic golden century canals. Nor tulips or cheese. Apart from being the birthplace of Erasmus in the 15th century, Rotterdam didn’t gain importance until the 19th century when the harbor started developing. The city center was largely destroyed in WWII, after which a new modern city was developed, and is in fact still developing. The latest advancements are gaining Rotterdam an international reputation, especially because of the architecture. In addition, it has a very active cultural agenda that you will inevitably and cheerfully be exposed to during the conference days. While we hope you will focus on the conference, you may want to check for things to do: https://en.rotterdam.info/agenda/. Here we present information on two events that you will find difficult to ignore, no matter how strongly you focus on the conference.

– **Rotterdam Unlimited**
 The most inevitable of events taking place concurrently with INFORMS Healthcare 2017 will be the Rotterdam Unlimited Festival. During the last week of July, Rotterdam will be full of food, music, and other forms of entertainment. Starting Friday afternoon, July 28, the city center will turn into a pedestrian zone, with a food market (Mercado) on the central street Coolsingel. The nights of July 28 and 29 will offer many stages with (free) live music, and attract cheerful crowds. On Saturday, July 29, Rotterdam will celebrate its own ‘Mardi Gras’: a Caribbean-style summer carnival.

– **UEFA 2017 Women’s European Soccer Championship**
 The historic soccer stadium Spangen (1916) will be home to many of the matches of the Women’s European Soccer championships. There will be a third-round match on July 26 (8:45pm) and a quarterfinal on Saturday, July 29 (8:45pm).
BADGES REQUIRED (for Technical Sessions)

INFORMS Healthcare 2017 badges must be worn to all sessions and events, and will be checked prior to entering the room. All attendees, including speakers and session chairs, must register and pay the registration fee, and pick up their badges from the registration desk. Lost badges can be replaced at the registration desk.

PRESENTERS: AV, COURTESY TO SPEAKERS

Projectors and laptops will be available in every technical session room. If you have a Mac, don’t forget your own adapter. Technical assistance will be available for any AV problems. You may need an adapter to connect your computer to the local voltage in Netherlands (23v).

During technical sessions, silence cell phones and mobile devices. Note that the use of camera and recording devices is prohibited unless you have received prior permission from the speaker.

PRESENTATION GUIDELINES

Session locations are listed in the Technical Sessions section and in the Master Track Schedule. Please be on time for your session and check-in with the session chair.

- Presentations are expected to be in English.
- Limit the presentation to key issues with a brief summary.
- Time your presentation to fit within your designated time span, leaving time for audience questions.
- You may bring copies of your paper or other handouts to distribute to the audience.

SESSION CHAIR GUIDELINES

The role of the Chair is to coordinate the smooth running of the session. The Chair:

- Begins & ends each session on time. Each session lasts 90 minutes, with the time per session determined by the number of papers in the session. Equal time should be given to each paper.
- Introduces each presentation (the title of the paper and the name of the author).
- Completes the session attendance and leaves the form in the session room when departing.

QUESTIONS? (about the Program, Presentations, Changes or Cancellations)

Come by the INFORMS Registration Desk located at the ground floor, De Doelen, if you have any questions.
10. The Main Opportunities & Challenges of Private Medicine in Low and Middle Income Countries of Eastern Europe
Tetyana Sandulovych, Commercial Head, Medical Plaza, Multidisciplinary Clinic

11. Nurses’ Work with Interruptions: An Objective Model for Testing Interventions
Robert A. Myers, Wright State University, Pratik J. Parikh

12. Piecing Multiple Sclerosis Together Through Mobile Technology
Fletcher Lee Hartsell, Duke University

Sakine Batun, Department of Industrial Engineering, Middle East Technical University, Alpin İlayda Özmen, Deniz Tanrıkkut, Gökçem Yiğit, Medya Tekçeş, Nur Keskin, Mélili Celik

14. The Impact of Competency Frameworks to Improve Leadership Performance in Healthcare Organisations. The Case of the Kingdom of Saudi Arabia
Namshan Algarni, Cranfield University, Dr. Patrick McLaughlin, Dr. Ahmed Al-Ashaab

15. Predicting Stroke Onset by Machine Learning Using Medical Data, Blood Flow Simulation Data & Blood Vessel Shape Data
Masaaki Suzuki, Tokyo University of Science, Yu-Chen Chen, Soichiro Fujimura, Takashi Suzuki, Hiroyuki Takao, Toshihiro Ishibashi, Yuichi Murayama, Hayato Ohwada

Rachel Slayton, U.S. Centers for Disease Control and Prevention, Prabasaj Paul, James Baggs, John Jernigan

17. Impact of Feature Selection on the Performance of Single Classifiers in Predicting Depression in the Elderly: Emphasis on Accuracy & Area Under the ROC Curve
Eunsung Lee, CSRI (Creativity Science Research Institute)

18. Sepsis Watch: Intensive Care Unit Lab Predictions
Andrea McCarter, Georgia Institute of Technology, Soorya Eswaran, Srijana Buddi, Kevin Johnson, Kevin Gu, Kahtish Deo, Shamim Nemati, Matthew Stanley, Vibhore Kumar

19. The Most Efficient Critical Vaccination Coverage and its Equivalence with Maximizing the Herd Effect
Lotty Evertje Duijzer, Erasmus University Rotterdam, Willem L. van Jaarsveld, Jacco Wallinga, Rommert Dekker
20. **Best Combination of Base-Meta Learner in the Stacking Classifier to Optimize its Performance in Predicting Depression in the Elderly** Kun Chang Lee, Sungkyunkwan University

21. **Reducing the Dimensionality of Patient Pathway Analysis: An Algorithmic Approach** Katherine Bobroske, University of Cambridge, Michael Freeman, Feryal Erhun, Lawrence Huan

22. **Exploring the Impact of Security and Privacy on Mobile Health Applications Ranking** Yazan Alnsour, University of Illinois Springfield

23. **A Fuzzy Hybrid MCDM Approach for Health Technology Assessment** Hakan Tozan, Istanbul Medipol University

MOBILE APP

The INFORMS Meeting App is available for iOS and Android devices. Detailed information, including the schedule of sessions, session abstracts, meeting locations, maps, exhibit hall details, and much more can be found on the app. This dynamic app can be downloaded directly to your device by visiting the iTunes or Google Play Stores and searching for “INFORMS Meetings.” When you view the meeting program in the app, you can either browse through the parallel sessions and special events or search for a specific speaker or keywords. As you locate the events, sessions, and presentations you are interested in, click on the star button, which bookmarks it to the My Schedule itinerary. Use My Schedule for a quick reference tool.

One of the great features of the conference app is that it will allow attendees—upon logging in—to search for other attendees, and send messages and requests through iNFORMS Connect.

Note: Previous versions of this App should be removed before downloading the 2017 Healthcare App.
WEDNESDAY, JULY 26 (10:30–11:30am)

Dimitris Bertsimas
Operations Research Center, Massachusetts Institute of Technology

Dimitris Bertsimas is the Boeing Leaders for Global Operations Professor of Management, a Professor of Operations Research, the Codirector of the Operations Research Center, and the Director of the Master of Business Analytics at MIT.

A faculty member since 1988, his research interests include optimization, stochastic systems, machine learning, and their application. In recent years, he has worked in robust optimization, statistics, healthcare, transportation, and finance. Bertsimas was a cofounder of Dynamic Ideas, LLC, which developed portfolio management tools for asset management. In 2002, the assets of Dynamic Ideas were sold to American Express. He is also the founder of Dynamic Ideas Press, a publisher of scientific books, the cofounder of Benefits Science, a company that designs healthcare plans for companies, of Dynamic Ideas Financial, a company that provides financial advice to customers, of Alpha Dynamics, an asset management company, P2 Analytics, an analytics consulting company, and of MyA health, a personalized healthcare advice company.

Bertsimas has coauthored more than 200 scientific papers and renowned books. He holds a BS in electrical engineering and computer science from the National Technical University of Athens, Greece, as well as an MS in operations research and a PhD in applied mathematics and operations research from MIT.

Personalized Medicine: A Vision for Research and Education

Medicine as taught in medical schools and as practiced today is not personalized. We present a research program to develop an algorithmic theory of personalized medicine applied to the major human diseases. Using electronic medical records and genomic data and in collaboration with major medical centers and medical doctors, we present our ongoing efforts to develop algorithms that propose personalized treatments for individual patients that suffer from these diseases. The new personalized medicine methods are based on new cutting-edge machine learning algorithms that use modern optimization methods and improve upon classical approaches. We further discuss the implications of our work on the education of the next generation of doctors.

THURSDAY, JULY 27 (12noon–1:30pm)

Dr. Erik Gerritsen
Secretary General at the Ministry of Health, Welfare and Sport

Erik Gerritsen was appointed Secretary General at the Ministry of Health, Welfare and Sport in June 2015. During his many years of government service, he has gained experience in a wide range of fields. As Secretary General he is not only in charge of the general governance of the Ministry, but is also responsible for the Macroeconomic Issues and Labour Market Department and the Financial and Economic Affairs Department of the Ministry.

Dr. Gerritsen began his career at the Ministry of Finance. In 1996 he was appointed Director, Financial and Economic Affairs of the Ministry of Foreign Affairs, where he became deputy Secretary General in 1999. In 2000 he made the transition to the Municipality of Amsterdam. As City Clerk of Amsterdam he was the primary advisor to the College of Mayor and Alderpersons. He was ultimately responsible for services in the city and for representing the City of Amsterdam in various regional, nationals and European matters. From 2007 until 2009 he was “ambassador for knowledge” of the Municipality. In 2009 he became Chairman of the Amsterdam Regional Youth Protection Agency.

Erik Gerritsen was born in The Hague in 1962 and studied political science at the Erasmus University in Rotterdam and public administration and information management at the Amsterdam University.

Dr. Eric de Roodenbeke
CEO, International Hospital Federation

Eric de Roodenbeke received his PhD in 1956. He is a French national with an extensive international experience in health systems and policies and a strong background in hospital management. Since June 2008 he holds the position of CEO of the International Hospital Federation. Prior to this he worked at the World Health Organization and the World Bank leading various health intervention, educational, management, and capacity building programmes mostly in Africa. He was Director of several French hospitals for 10 years. He also worked at the French Ministry of Foreign Affairs for 10 years both at headquarters and in field
Eric de Roodenbeke holds a PhD in health economics, a Hospital Administration postgraduate diploma, and a University diploma in public health. He has taught in various masters programs and senior continuous education courses and published several books as well as various articles in professional journals.

The INFORMS Contribution for the Health Systems and Hospitals of the Future

Over the past years, the Dutch Health System has received considerable international praise. At the same time, however, there are concerns about the sustainability and the adaptations that are needed to meet future societal needs. In most scenarios, information technology and analytics play an important enabling role to provide solutions for the challenges ahead.

Much of the discussions on making adaptations to health systems, whether in the Netherlands or abroad, focus around the pivotal role of hospitals. In addition to other advances, information technology will change their relationships with patients, with primary care, and is already bringing some of the services from the real physical world to the Internet. There is a role to play for operations research and analytics to design these transitions and develop their cost-effectiveness.

Two highly distinguished guests will share their views on these developments. Erik Gerritsen will position the Dutch health system and unveil the plans to meet future challenges. Eric de Roodenbeke will discuss the present and future roles of hospitals, and share his views on the role of information technology and analytics.

After presenting their views, the plenary speakers will involve the audience through a series of propositions regarding the contribution the INFORMS community can make to promote effective solutions for the identified challenges.

THURSDAY, JULY 27 (3:30–4:30pm)

Brian Denton
Department of Industrial & Operations Engineering, University of Michigan

Brian Denton has a joint appointment with Urology and Industrial & Operations Engineering (IOE) departments. He joined the IOE faculty in 2012. His primary research interests are in optimization under uncertainty with applications to medical decision making related to the detection, treatment, and prevention of chronic diseases. He is a member of the Institute for Healthcare Policy and Innovation at University of Michigan and he holds a fellowship appointment at the Cecil Sheps Health Services Research Center at University of North Carolina at Chapel Hill. Brian is the current president of the INFORMS for 2017.

Previously, he has been a Senior Associate Consultant at Mayo Clinic, and a Senior Engineer at IBM. In 2009 he received the National Science Foundation Career Award. He also won the INFORMS Service Section Prize (2010), the INFORMS Daniel H. Wagner Prize (2005), the Institute of Industrial Engineers Outstanding Publication Award (2005), and the Canadian Operations Research Society Best Paper Award (2000). He has coauthored more than 50 journal articles and conference proceedings, and has 25 patents granted by the U.S. Patent and Trademark Office.

Operations Research in Medicine: Past, Present and Future

Operations Research (O.R.) methods such as decision analysis, simulation, stochastic models, and optimization, have a long and rich history of use for research and practice in medicine over the last several decades. Applications include cancer screening, diabetes treatment, glaucoma monitoring, organ transplants, radiation therapy, and many others. In this talk I will discuss some of the ways O.R. has had an impact on medicine in the past, drawing on several specific examples in the area of chronic diseases. Next, I will discuss some contemporary applications and discuss the research challenges and the opportunities these problems present to drive the development of new O.R. methods. Finally, I will conclude by summarizing some of the exciting new directions where O.R. can play a much needed role in the future including personalized medicine, biomarkers for early detection of diseases, and the development of artificial and regenerated organs.
THANKS TO OUR 2017 HEALTHCARE CONFERENCE SPONSORS

The H. Milton Stewart School of Industrial and Systems Engineering (ISyE) at the Georgia Institute of Technology is the largest program in industrial and systems engineering, and has been named the top ranked program by U.S. News & World Report for more than two decades. The ISyE undergraduate program offers a track-based curriculum that allows students to either obtain a broad industrial engineering education or specialize in operations research, supply chain engineering, quality and statistics, or economic and financial systems. ISyE’s graduate program offerings include master’s degrees in analytics, operations research, statistics, health systems, supply chain engineering, and industrial engineering; and PhD degrees in operations research, industrial engineering, and machine learning. ISyE faculty conduct research in methodological areas such as optimization, statistics, analytics, machine learning, stochastic systems, simulation, and system informatics and control; and application-driven areas such as supply chain engineering and logistics, health systems, advanced manufacturing, energy, and sustainable systems engineering.

Erasmus University Medical Center Rotterdam is committed to a healthy population and excellence in healthcare through research and education. It is in the top 10 of best medical institutes in Europe (QS Ranking 2016) and excels in various research fields, studying fundamental and clinical domains as well as public health and prevention. Bibliometric indicators place Erasmus MC in the top 20 of clinical medicine worldwide. In addition to scientific research, patient care and education are core tasks of Erasmus MC. It is the top referral centre for a region of about five million inhabitants. Erasmus MC is the largest medical school in the Netherlands, with around 3,100 medical students and around 250 PhD graduates yearly.

The Institute of Health Policy & Management (iBMG) of Erasmus University Rotterdam (EUR) is leading in the Netherlands with its educational and research activities targeted at policy and management issues in healthcare. The institute offers a bachelor programme, five master programmes, and post-academic educational programmes and courses. At iBMG, research and educational activities are closely intertwined. Knowledge and experiences of various scientific disciplines such as economics, law, social-medical sciences, organisational science, and public administration are brought together and applied to the healthcare sector. This multidisciplinary approach to education and research is unique.

Erasmus Research Institute of Management (ERIM) is a research school of Erasmus University Rotterdam (EUR). ERIM was founded in 1998 by two schools of EUR: Rotterdam School of Management, Erasmus University (RSM) and Erasmus School of Economics (ESE). Consistently ranked in the top three of management research centres in Europe, ERIM is a community of over 350 management scientists who publish in leading academic journals. For aspiring researchers, ERIM offers an advanced doctoral programme in business and management. ERIM is accredited by the Royal Netherlands Academy of Arts and Sciences (KNAW).
ORTEC is one of the world’s leaders in optimization software and analytics solutions. Using our skills in mathematics, software engineering, and business processes, we help you to make your business more efficient, more predictable, and more effective. Turning complex challenges into easy-to-use solutions, we serve organizations in almost every industry. From our 15 offices strategically located across four continents, we can deliver solutions on a global scale. Always underpinned by local know-how and service.

Rotterdam Partners has the objective of strengthening the economy of Rotterdam and the region. We work for businesses, visitors, and residents who are already based in the city or those who plan to visit or establish themselves in Rotterdam in the future. Rotterdam Partners has a number of core tasks. First of all, Rotterdam Partners is the link that connects, strengthens, and enhances local and regional networks. In addition, we facilitate the organisation of activities, respond to queries from those considering relocating to Rotterdam, and work toward addressing economic issues. We also undertake initiatives to promote innovation in the Rotterdam economy. Finally, we bring together supply and demand in fields like tourism, business events, and conferences.

University of Cologne The Faculty of Management, Economics and Social Sciences of the University of Cologne has a strong tradition in both fundamental and applied research. In research, we strive to fulfill our mission “Innovation for Society” by rigor and relevance. We strive for rigorous basic research published in top ranked scientific journals that is relevant for business practice, economics, and the development of society. Our interdisciplinary approach of Business Administration, Health Care Management, and Social Policy aim to address the interfaces between Management, Economics, and Medicine.
INFORMS ANNUAL & INTERNATIONAL MEETINGS

2017

- INFORMS Annual Meeting
 October 22–25
 George R. Brown Convention Center & Hilton Americas Houston
 Houston, TX
 Chair: Bill Klimack, Chevron
 http://meetings.informs.org/houston2017/

- Winter Simulation Conference (WSC) 2017
 December 3–6
 Red Rock Casino Resort & Spa
 Las Vegas, NV
 Chair: Ernest H. Page, MITRE
 http://www.wintersim.org

2018

- INFORMS Conference on Business Analytics & Operations Research
 April 15–17
 Marriott Waterfront Hotel
 Baltimore, MD
 Chair: Jack Kloeber, Kromite, LLC
 http://meetings.informs.org/analytics2018/

- INFORMS International Meeting
 June 17–20
 Taipei International Convention Center
 Taipei, Taiwan
 Chair: Grace Lin, Asia University
 http://meetings.informs.org/2018international/

- INFORMS Annual Meeting
 November 4–7
 Phoenix Convention Center
 Phoenix, AZ
 Chair: Young-Jun Son, University of Arizona

INFORMS COMMUNITY/CHAPTER MEETINGS

2018

- INFORMS Optimization Society Conference
 March 23–25
 University of Colorado Denver, CO
 Chair: Stephen Billups, University of Colorado Denver
 http://orwe.mines.edu/conference/

- INFORMS Marketing Science Conference
 June 14–16
 Temple University
 Philadelphia, PA
 Chair: Xueming Luo, Temple University

- INFORMS MSOM International Conference
 June 30–July 2
 National University of Singapore
 Singapore

Go to https://www.informs.org/Meetings-Conferences/Conference-Calendar for a searchable INFORMS Conference Calendar
How to Navigate the Technical Sessions

There are four primary resources to help you understand and navigate the Technical Sessions:

- This Technical Session listing, which provides the most detailed information. The listing is presented chronologically by day/time, showing each session and the papers/abstracts/authors within each session.
- The Author and Session indices provide cross-reference assistance (pages 61-67).
- The floor plan is on the back cover and shows you where technical session tracks are located.
- The Master Track Schedule is on the inside back cover.

Quickest Way to Find Your Own Session

Use the Author Index (pages 62-65) the session code for your presentation will be shown along with the room location. You can also refer to the full session listing for the room location of your session.

The Session Codes

<table>
<thead>
<tr>
<th>Room number</th>
<th>Room locations are also indicated in the listing for each session.</th>
</tr>
</thead>
</table>

Time Blocks

Wednesday

- A — 8:30am - 10:00am
- Plenary — 10:30am - 11:30pm
- B — 1:00am - 2:30pm
- Poster — 2:30pm - 3:30pm
- C — 3:30pm - 5:00pm

Thursday

- A — 8:30am - 10:00am
- B — 10:30am - 12:00pm
- Plenary — 12:00pm - 1:30pm
- C — 1:30pm - 3:00pm
- Plenary — 3:30pm - 4:30pm

Friday

- A — 8:00am - 9:30am
- B — 10:00pm - 11:30pm
- C — 11:35pm - 1:05pm

Wednesday, 8:30am - 10:00am

WA01

Van Cappellen Zaal, Ground Level

Empirical and Experimental Research in Healthcare Operations

Sponsored: Health Applications

Sponsored Session

Chair: Evrim D. Gunes, Koc University, Koc University, Istanbul, 34450, Turkey, egunes@ku.edu.tr

1 - Knowledge-Work in Healthcare: Confronting the Tradeoff between Task Speed and Care Quality

Craig Froehle, University of Cincinnati, 2925 Campus Green Drive, Cincinnati, OH, 45221-0130, United States, craig.froehle@uc.edu, Lauren F. Laker

Healthcare has increased its reliance on electronic records and other information systems. As a result, providers are frequently being subjected to information overload (IO). To combat IO, we propose using “emphasis framing” tactics. We test the efficacy of emphasis framing using an in-depth behavioral experiment involving emergency physicians developing a preliminary plan of care for a new patient.

We find that emphasis framing significantly increases quality of care, but at a cost.

2 - Financial Health and Hospital Operations

Christopher J. Chen, London Business School, Regent’s Park, London, NW14SA, United Kingdom, cchen@london.edu, Nicos Savva

We analyze how changes in hospital spending on patient care affects readmissions and mortality rates, and lays the foundation for studying the impact of funding cuts on operational decisions such as staffing levels and mix. Combining datasets from the Centers for Medicare & Medicaid Services (CMS) on hospital quality and financial performance, and using instrumental variable estimation to address endogeneity in hospital spending, we find that a 1% increase in spending per patient reduces aggregate readmissions by 0.053%. Our findings indicate potential negative impacts from cuts on patient outcome and sets up further tests on the resource pecking order.

3 - An Empirical Analysis of Diagnostic Test Ordering Behavior of Physicians at Outpatient Units Under the Influence of Workload

Busra Ergun Sahin, Koc University, Istanbul, Turkey, bursarasahin16@ku.edu.tr, Evrim Didem Gunes, Ayse Kocabiykoglu

We investigate the influence of workload on the use of diagnostic tests by physicians in outpatient units. The objective in this paper is to show using actual operational data from hospitals, that healthcare delivery workers demonstrate adaptive behavior in response to the amount of workload. We hypothesize that physicians order more diagnostic tests when they have less time to spend with the patient. We test this hypothesis using data from different clinics in a large training and research hospital.

WA02

Arcadis Zaal, First Floor

ALIO Sponsored Session

Invited: Health Operations Management

Invited Session

Chair: Rodrigo A. Carrasco, PhD, Universidad Adolfo Ibanez, Universidad Adolfo Ibanez, Santiago, Chile, rax@uai.cl

1 - Multi-Objective Admission Planning Problem: A Two-Stage Stochastic Approach

Ana Celeste Batista, Pontifical Catholic University of Chile, Ave. Vicuna Mackenna 4860, Santiago, Chile, abatista@uc.cl, Jorge R. Vera, David Pozo

Effective admission planning can improve inpatient throughput and waiting times. The decisions are generally focused on the resource efficiency avoiding patient service criteria. We present a multi-objective admission planning problem to deal simultaneously with patient and hospital perspectives. We develop a stochastic model taking into account demand and bed capacity uncertainties. The model estimate the effect of admission policies with data from a Chilean hospital.
2 - Cost Effectiveness Analysis of Hep C Treatments: Beyond Markov
Susana Mondschein, Universidad Adolfo Ibanez, 2640 Diagonal las Torres, Penalolen, Santiago, 7550000, Chile, susana.mondschein@uai.cl, Natalia Yankovic
In recent years, highly effective treatments for hepatitis C virus became available. However, a careful cost effectiveness evaluation is needed, due to the economic constraints most health care systems face. We propose a dynamic programming model with age dependent transitions. The solution is of a threshold type, i.e., new drugs are cost effective for patients at a given level of fibrosis if younger than a pre-specified limit, otherwise a conservative approach of closely monitor the evolution of the patient should be followed.

3 - Operating Room Scheduling with Variable Procedure Times
Rodrigo A. Carraza, UAI Systems Director, Universidad Adolfo Ibanez, Santiago, Chile, rcarraza@uai.cl, Javiera Barrera, Susana Mondschein, Macarena Azar
The operating room scheduling problem has been tackled from many different perspectives. In this work, we propose a time-indexed scheduling formulation using chance constraints related to the surgery duration probability distribution for each surgeon, to improve the scheduling of an operating theater. Through simulations and the use of real instances, we report the performances for different metrics, showing the importance of using historical data and adding the different types of patients.

 WA04
 Hudig Zaal, Third Floor
 Data Analytics and Machine Learning I
 Contributed Session
 Chair: Behrouz Bakhtiari, Ryerson University, 508 - 666 Spadina Avenue, Toronto, ON, M5S 2H8, Canada, bbakhtiari@ryerson.ca

1 - Effective Treatments with Chronic Disease Management: Leveraging Patient Trajectories with Hidden Markov Models
Stefan Feuerriegel, Dr, University of Freiburg, Platz der Alten Synagoge, Freiburg, 79098, Germany, stefan.feuerriegel@is.uni-freiburg.de, Michael Horner
Recent innovations in IT-enabled health tracking allow for the close monitoring of patients. The seemingly inexhaustible volume of collected data can eventually facilitate new insights into medical conditions, especially for patients suffering from chronic diseases. While the data itself is readily available, further effort is necessary to develop statistical approaches that can derive latent medical conditions from this information and make corresponding recommendations for more effective treatment plans customized to individuals. For this purpose, we propose the use of hidden Markov models as means to identify the “true” medical condition of patients.

2 - A Day in the Life of Magnetic Resonance Imaging: Assessing the Variety and Appropriateness of Exams Being Performed in Canada
Sonya Vanderby, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada, sonya.vanderby@usask.ca, Andreea Badea, Juan Nicolas Peña Sanchez, Neil Kalra, Paul Babyn
We studied the volumes, types, and appropriateness of Magnetic Resonance Imaging (MRI) exams performed across Canada. Exam data for one common day were obtained from 13 academic hospitals. Exam appropriateness was evaluated via published exam appropriateness tools. Among the sample of 1087 exams, brain exams were the most common anatomically; cancer was the most common cause. 87.0% to 87.4% of the exams were appropriate based on the main evaluation tools but results differed by anatomic region.

3 - Inpatient and Post Discharge Care Package Design with Data Driven Machine Learning Algorithm
Jingjing Guan, Postdoctoral Fellow, City University of Hong Kong, 5-216 Lau Ming Wai Academic Building, Hong Kong, jguan46@cityu.edu.hk, Eman Leung, Frank Y. Chen
Rehospitalization is a fact of life in aging population. A patient’s well-being after being discharged from a hospital is a function of whether the patient has received sufficient inpatient care and if the length and duration of post-discharge care are adequate enough for delaying future hospitalization. We first use machine learning methodology to train a model using 20 years of data extracted from an inpatient hospital to identify the function for patient segments (partitioned based on demographics, cumulative length of stay and diagnoses of chronic diseases). The accuracy of the algorithm will be tested against the inpatient and post-discharge care allocation of an out-of-sample cohort.

 WA05
 Schadee Zaai, Third Floor
 Stochastic Models for Hospital Operations Management
Invited: Health Operations Management
Invited Session
Chair: Na Geng, Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai, 200240, China, gengna@sjtu.edu.cn

1 - Admission Quota for Elective Patients under Uncertain Emergency Demands
Jiajun Dai, Shanghai Jiao Tong University, Shanghai, China, jiajun_dai@sjtu.edu.cn, Na Geng, Xiaolan Xie
To determine the admission quota for elective patients by considering the uncertain emergency arrival, this paper proposes a Markov Decision Process model with the objective to maximize the revenue from accepting the elective patients minus the overcapacity penalty. Structural properties of the optimal policy are established and heuristic policies are proposed to solve the real size problems. Numerical experiments are performed to compare the performance of different policies and identify the influence of different parameters.

2 - Big Data Based Optimization of Healthcare Resources Allocation for Asthma Considering Air Pollution
Li Luo, Sichuan University, Chengdu, China, luolcc@scu.edu.cn
Asthma is a chronic, not easy to cure, and environment-sensitive disease. The study researchs on the impact of air pollution and treatment schemes on the healthcare resource demand of asthma, based on environmental monitoring data and healthcare insurance data of Chengdu, in China, then optimizes the healthcare resource allocation, by dynamically scheduling healthcare resource to break the shackles from healthcare institutes, is of great practical significance.

3 - Optimal Issuing and Ordering Policies for Inventory Management of Blood Platelet
Na Geng, Shanghai Jiao Tong University, Shanghai, China, gengna@sjtu.edu.cn
Blood platelet is a typical perishable product. The fresher the blood platelet is, the more utility the patient gets. The classical first-in, first-out is not always the optimal issuing policy. To deal with the issuing and ordering policies, this paper proposes a Markov Decision Process model with the objective of maximizing patients’ utility minus weighted waiting, inventory, and salvage cost. Structural properties of the optimal control policies are established.

 WA06
 Van Beuningen Zaai, Third Floor
 Optimization Modeling for Medical Decision Making
Invited: Medical Decision Making
Invited Session
Chair: M. Gabriela Sava, Clemson University, 145 Srrine Hall, Clemson, SC, 29634, United States, msava@clemson.edu

1 - On Using Sensitivity and Stability Analysis to Optimize Patient-centered Medical Decision Making
M. Gabriela Sava, PhD, Clemson University, Clemson, SC, mgsava@clemson.edu, Luis G. Vargas, Jerrold H. May, James G. Doolin
Custom tailoring a sensitivity and stability analysis for an individual patient faced with choosing a colorectal cancer screening option might be appropriate if there are particular considerations involved with that patient. For routine cases, patients classified as having an average risk for colorectal cancer, it may be sufficient to partition the space of patients based on their preferences, and to produce a generic analysis that would be a good approximation across each partition of the space.
2 - Multi-objective Optimization in Radiotherapy
Rens van Haveren, Eramus MC - Cancer Institute, Rotterdam, Netherlands, r.vanhaveren@erasusmc.nl, Ben J. Heijmen, Gerda M. Verduijn, Marleen Keijzer, Wlodzimierz Ogryzczak, Sebastiaan Breedveld
Radiotherapy is used to treat over 50% of all cancer patients. Due to each patient’s unique anatomy, a personalized treatment plan is required. This plan specifies how the dose (resulting from the irradiation) is distributed inside the patient’s body. The main goal is to sufficiently irradiate the tumor, while the other goals are to keep the doses to the surrounding healthy organs as low as possible. Hence, treatment planning is a multi-objective optimization problem and usually involves 10-30 correlated objectives. This talk discusses automated methods that aim to balance these objectives optimally for each patient resulting in a favorable balance between probability of cure and quality of life.

3 - Optimal Treatment Plans for Volumetric Modulated ARC Therapy (VMAT) using Branch-and-Price
Pınar Dursun, Bogazici University, Bogazici Universitesi 34342 Bebek, Istanbul, 34342, Turkey, pinar.dursun@boun.edu.tr, Z. Caner Taâk, Z. Kuban Altınoel
Radiation can be delivered continuously during VMAT, because the gantry of the linear accelerator (linac) may rotate on one or more arcs. Linac is also equipped with a multileaf collimator (MLC) that shapes the radiation. These properties make VMAT powerful in obtaining high conformal plans in terms of dose distribution with short treatment times. However, the apertures that composed by the MLC are interdependent, which makes planning hard. We propose a mixed integer linear programming model and a branch-and-price algorithm for optimal treatment planning.

WA09
Van Rieckosveld Zaai, Fourth Floor
Scheduling and Planning I
Contributed Session
Chair: Deepak Agrawal, Pennsylvania State University, 801 Southgate Drive, A4, State College, PA, 16801, United States, agrawal.deepak@gmail.com
1 - Effects of Rescheduling on Patient No-show Behavior in Outpatient Clinics
Zhihao Zheng, Singapore Management University, 50 Stamford Road, Lee Kong Chian School of Business, Singapore, 178899, Singapore, danielzheng@smu.edu.sg
We study the effects of waiting time and rescheduling on no-show behavior in an outpatient appointment system for both new and follow-up patients. Using comprehensive clinical data, we demonstrate that waiting time has little effect on no-show behavior of follow-up patients. Instead, their no-show probability decreases significantly if their appointments were rescheduled at their own requests but increases significantly if they were rescheduled by the clinic. New patients, in contrast, are only concerned about waiting time and are insensitive to who initiates the rescheduling. Our results provide useful implications for managing no-shows.

2 - Reducing Clinic Variability Through Same-day Scheduling, Intervention for No-shows and Seasonal Adjustments
Kum-Khiong Yang, Professor, Singapore Management University, Lee Kong Chian School of Business, 50 Stamford Road, Singapore, 178899, Singapore, kkyang@smu.edu.sg
This study investigates demand and capacity strategies for reducing clinic variability. These include (i) same-day scheduling to control for random walk-ins, (ii) no-show intervention, where the clinic calls advance-booked patients a day before and releases canceled slots to same-day demand, and (iii) adjustments to daily number of appointments to match seasonal variations in demand. These strategies implemented over the BIFI and Dome rules result in improvements in clinical performance measured in terms of patient wait times, physician idle time and overtime.

3 - Prescription-based Market Analysis for Oral Antidiabetic Drugs in Taiwan from 2004 to 2013
Hui-Min Wang, Physician, PulI Branch, Veteran General Hospital Taichung, Nantou, Taiwan, wanghm1964@gmail.com, Mei-Ting Tsai
Pharmaceutical companies compete in research and development for new type 2 diabetes drugs. In this diversified market, factors driving the market shares remain unclear. This study aims to investigate the market situation in Taiwan via a prescription-based analysis. The prescription data are collected from Taiwan Health Insurance Database for a period of ten years. Incorporating with the drug events, the prescribing habits of physicians, the effects of price changes and new drug launches on the market penetration of the seven categories of oral anti-diabetic drugs are discussed.

4 - Online Scheduling Algorithms for Infusion Outpatients
Kimia Ghabadi, MIT, 100 Main Street, E62-459, Cambridge, MA, 02142, United States, kimig@mit.edu, Michael Hu, Inga Lennes, Retsel Levi, John Stone, Ana Cecilia Zenteno
We developed online intra- and inter-day algorithms to schedule infusion appointments for outpatients. Each appointment is scheduled without prior knowledge of future appointments with the goal of minimizing the number of required resources. We analyze the algorithms’ performance and our results show up to 45% decrease compared with historical resource utilization.

WA08
Ruys Zaai, Fourth Floor
Data-driven Models in Health Care Operations
Invited: Health Operations Management
Invited Session
Chair: Ana Cecilia Zenteno, Massachusetts General Hospital, Boston, MA, 02114, United States, Azentenolang le@Partners.org
1 - Evaluating Usefulness of Information Quality in Predicting Daily Surgical Volume
Vikram Tiwari, Vanderbilt University Medical Center, 1211 21st Ave South, Medical Arts Building 422H, Nashville, TN, 37212, United States, vikram.tiwari@vanderbilt.edu, Joonypun Eun, Warren S. Sandberg
We develop a data-driven methodology for predicting day-of-surgery case volume at both the individual surgeon level and the surgical service level. We quantify the incremental value of accounting for errors in the data, as well as using better parameterized data. Results highlight the tradeoff between ‘more data that has errors’ versus ‘less error but cleaner data’.

2 - Data-driven Appointment-scheduling under Uncertainty: The Case of an Infusion Unit in a Cancer Center
Nikolaos Trichakis, MIT, 100 Main Street, E62-576, Cambridge, MA, 02142, United States, strichakis@mit.edu, Avishai Mendelbaum, Petar Momcilovic
We consider appointment scheduling under a time-varying number of servers, in a data-rich setting with uncertain service times and punctuality. Our data-driven approach, based on infinite-server queues, yields tractable solutions for hundreds of jobs and servers. We successfully test our approach against near-optimal algorithms, which were developed for merely single-servers. This entails a robust optimization algorithm with novel uncertainty sets. To test for practical performance, we leverage a unique dataset from a cancer center, that combines real-time locations, EHRs and appointments log. Focusing on the Infusion Unit (90 appointments, 25 infusion chairs), we reduce cost by 30%.

3 - Models Based on Longitudinal Healthcare Data
Hari Balasubramanian, University of Massachusetts-Amherst, 160 Governors Drive, Amherst, MA, 01003, United States, hbalasubraman@ecs.umass.edu
We discuss methods for analyzing data concerning healthcare encounters at the individual level. These encounters can be of various types - outpatient, emergency room, inpatient, pharmaceutical etc. Each encounter happens on a certain day (or a certain hour) and when such data is collected over a period of time, it creates an evolving point process unique to each individual. The point process provides information about the intensity and diversity of encounters - how frequent and how fragmented the care is across multiple settings. We provide examples where such data could be used and discuss the stochastic methods that are best suited for generating insights.
1 - On the Management of Blood Inventory when Transfusions Exist
Marilyn T. Lucas, University of Vermont, 202 Kalkin Hall
55 Colchester Avenue, Burlington, VT 05405-0157, United States,
mllucas@bsad.uvm.edu, David Novak, S. Kari Puranam
This project analyzes inventory and supply issues related to blood storage and usage by the blood bank of a large regional hospital when uncontrolled transfers of “about to expire” blood from smaller hospitals throughout the region routinely occur. We develop an optimization model, derive simple decision rules, and complement our findings with a generalized simulation analysis, relying on actual demand and transfer data from the hospital, and perform extensive sensitivity analyses on various parameters of the model.

2 - Double Cross-match and a Hybrid Issue Policy to Improve Blood Bank Inventory Management
Ali Hajj Agha Bozorgi, Post-Doctoral Fellow, Sharif University of Technology, Tehran, Iran, Islamic Republic of, bozorgi.ie@gmail.com
We develop a new inventory management model as a decision making tool to help making tactical and operational level decisions for a Hospital Blood Bank inventory management, including issuance policy, and collection and ordering policy, to reduce blood wastage and shortage. We propose a multi period, multi-product inventory problem that performs double cross match of blood units, with a new issuance policy. Using the cross match ratio, we determine core demand of each patient, as well as reserve demand. We then define an assignment problem to determine patients who can share reserve demand. At the end of each period, we update the inventory status (as we deal with aging products, in a multi period model).

3 - An Age Based Lateral Transshipment Policy for Perishable Items
Maryam Dehghani, RMIT University, La Trobe Street, Melbourne, Australia, maryam.dehghani@rmit.edu.au, babak abbas
Lateral transshipment is an efficient policy designed to improve the performance of a supply chain. Despite the importance of transshipment for perishable items, few studies consider the issue of perishability. In this paper, we propose a new transshipment policy for perishable items based on the age of the oldest item in the system. We develop a heuristic solution using partial differential equations. We compare the performance of our transshipment policy to the transshipment policy that is currently practiced in Australian hospitals. The results show that by setting the optimal threshold, hospitals could transfuse fresher units of blood in two days while reducing their total inventory cost by 5%.

- WA10
Supply Chains I
Contributed Session
Chair: Maryam Dehghani, RMIT University, La Trobe Street, Melbourne, Australia, maryam.dehghani@rmit.edu.au
1 - On the Management of Blood Inventory when Transfusions Exist
Marilyn T. Lucas, University of Vermont, 202 Kalkin Hall
55 Colchester Avenue, Burlington, VT 05405-0157, United States,
mllucas@bsad.uvm.edu, David Novak, S. Kari Puranam
This project analyzes inventory and supply issues related to blood storage and usage by the blood bank of a large regional hospital when uncontrolled transfers of “about to expire” blood from smaller hospitals throughout the region routinely occur. We develop an optimization model, derive simple decision rules, and complement our findings with a generalized simulation analysis, relying on actual demand and transfer data from the hospital, and perform extensive sensitivity analyses on various parameters of the model.

2 - Double Cross-match and a Hybrid Issue Policy to Improve Blood Bank Inventory Management
Ali Hajj Agha Bozorgi, Post-Doctoral Fellow, Sharif University of Technology, Tehran, Iran, Islamic Republic of, bozorgi.ie@gmail.com
We develop a new inventory management model as a decision making tool to help making tactical and operational level decisions for a Hospital Blood Bank inventory management, including issuance policy, and collection and ordering policy, to reduce blood wastage and shortage. We propose a multi period, multi-product inventory problem that performs double cross match of blood units, with a new issuance policy. Using the cross match ratio, we determine core demand of each patient, as well as reserve demand. We then define an assignment problem to determine patients who can share reserve demand. At the end of each period, we update the inventory status (as we deal with aging products, in a multi period model).

3 - An Age Based Lateral Transshipment Policy for Perishable Items
Maryam Dehghani, RMIT University, La Trobe Street, Melbourne, Australia, maryam.dehghani@rmit.edu.au, babak abbas
Lateral transshipment is an efficient policy designed to improve the performance of a supply chain. Despite the importance of transshipment for perishable items, few studies consider the issue of perishability. In this paper, we propose a new transshipment policy for perishable items based on the age of the oldest item in the system. We develop a heuristic solution using partial differential equations. We compare the performance of our transshipment policy to the transshipment policy that is currently practiced in Australian hospitals. The results show that by setting the optimal threshold, hospitals could transfuse fresher units of blood in two days while reducing their total inventory cost by 5%.

- WA11
Medical Decision Making I
Contributed Session
Chair: Ainize Cidoncha, IS Global, Cholmeley Park, London, N6 5 EU, United Kingdom, ainizecm@gmail.com
1 - Optimal Resource Allocation for Network Protection Against Epidemic Processes
Victor Manuel Preciado, Raj and Neera Singh Assistant Professors, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, 19103, United States, preciado@seas.upenn.edu
We study the problem of containing epidemics outbreaks taking place in an arbitrary network by distributing protection resources throughout the network. We consider two types of protection resources: (i) Preventive resources able to defend nodes against the spread and (ii) corrective resources able to neutralize the spread after a node has been infected. We assume that both types of resources have an associated cost and study the problem of finding the cost-optimal distribution of resources throughout the nodes of the network. We show that for a wide class of cost functions, this problem can be solved in polynomial time using Geometric Programming (GP).

- WA12
Radiation Therapy Planning
Invited: Disease and Treatment Modeling
Invited Session
Chair: Omid Nohadani, Northwestern University, Evanston, IL, 60208-3119, United States, nohadani@northwestern.edu
1 - Knowledge Driven Robust Framework for Radiation Therapy Protocol Optimization
Omid Nohadani, Northwestern University, 2145 Sheridan Road, Technological Institute M233, Evanston, IL, 60208-3119, United States, nohadani@northwestern.edu
Clinical decisions typically follow established protocols. These are either derived from first principles, past experimentations, or experts’ knowledge. Whenever their implementation turns infeasible, decision makers relax a subset to attain practicable solutions, using personal experience. We provide a framework for robustly optimizing protocols by systematically extracting knowledge from past decisions and current protocols, while inherently accounting for uncertainties. To demonstrate the approach, we study the case of radiation therapy using a large set of past head-and-neck treatments.
2 - Robustness in Hypoxia-guided Radiation Therapy
Arkajyoti Roy, Bowling Green State University, 349 Business Administration Building, Applied Statistics and Operations Research, Bowling Green, OH, 43403, United States, aroy@bgusu.edu, Omid Nohadani
Reduction in radiosensitivity from low oxygen concentration in tumor cells has an adverse effect on radiation therapy treatments. Reoxygenation leads to uncertain temporal variations in cell oxygenation, ranging from short-term fluctuations due to perfusion to gradual changes from angiogenesis. In this work, we model the reoxygenation trajectory to reside in a time-dependent uncertainty set that is updated by mid-treatment observations. A robust optimization model incorporating the uncertainty set is solved for a discrete set of clinically realistic scenarios. A prostate case is used to evaluate the robust method in comparison to current clinical practice.

3 - Supporting the Design of Radiotherapy Treatment Planning using Data Envelopment Analysis
Emma Stubington, Lancaster University, Lancaster, United Kingdom, e.stubington@lancaster.ac.uk, Matthias Ehrgott, Omid Nohadani
Complications arise in treatment planning from conflicting objectives; an ideal plan would maximise radiation to the tumour and minimise radiation to healthy cells. If a plan does not meet clinical criteria it must be re-optimised using trial and error. We use Data Envelopment Analysis to assess the quality of individual plans and suggest improvements by comparing them against existing plans. Robust Optimisation and simulation are used to account for the effects of uncertainty during treatment.

Wednesday, 10:30am - 11:30am

■ Plenary
Willem Burger Zaal

Dimitris Bertsimas Plenary

Plenary Session
1 - Personalized Medicine: A Vision for Research and Education
Dimitris Bertsimas, Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States, dbertsim@mit.edu
Medicine as taught in medical schools and as practiced today is not personalized. We present a research program to develop an algorithmic theory of personalized medicine applied to the major human diseases. Using electronic medical records and genomic data and in collaboration with major medical centers and medical doctors, we present our ongoing efforts to develop algorithms that propose personalized treatments for individual patients that suffer from these diseases. The new personalized medicine algorithms use modern optimization methods and improve upon classical approaches. We further discuss the implications of our work on the education of the next generation of doctors.

Wednesday, 1:00pm - 2:30pm

■ WB01
Van Cappellen Zaal, Ground Level

Empirical Healthcare Operations
Sponsored: Health Applications
Sponsored Session
Chair: Hessam Bavafa, Wisconsin School of Business, Madison, WI, 53706, United States, hbavafa@bus.wisc.edu
1 - Rating GP Performance using ED Data
Sandra Suelz, Erasmus University-Rotterdam, Rotterdam, Netherlands, sulz@bmg.eur.nl, Nicos Savva
Measuring access and clinical quality of GP care is difficult either due to data unavailability, low frequency of data collection, or inconsistent data collection across EDs. ED-level data, however, exists and is comparable across hospitals. We use UK-based data to analyze whether ED-level data can be used to assess GP performance thereby distinguishing between accessibility for acute conditions and management of long-term care conditions.

2 - Causes and Consequences of Patient Bed Assignment Decisions in Hospitals
Jillian Berry Jaeker, Boston University, 595 Commonwealth Avenue, Room 657A, Boston, MA, 02215, United States, jjaker@bu.edu, Sandra Suelz, Jonas Schreyögg
This project aims to analyze the role of the admitted department in hospitals on the quality and cost of care. Using a national dataset of inpatient visits, we explore the conditions that lead to secondary inpatient unit placement and the resulting care pathways.

3 - Drivers of Productivity in Radiology
Maria R. Ibanez, Harvard Business School, 500 Soldiers Field Road, Wyss House, Boston, MA, 02163, United States, mibanez@hsb.edu
Using detailed data on millions of radiological studies interpreted by physicians, we study the drivers of speed and quality of the interpretation, and identify implications for scheduling and allocation of work across workers.

4 - Patient Portals in Primary Care
Hessam Bavafa, Wisconsin School of Business, 4284C Grainger Hall, 975 University Avenue, Madison, WI, 53706, United States, hbavafa@bus.wisc.edu
Interest in innovative healthcare delivery models has increased due to measures such as the Affordable Care Act, which is designed to expand insurance coverage and contain healthcare costs. One innovation that has been forwarded as a low-cost alternative to physician office visits is “e-visits,” or secure messaging between patients and physicians. We evaluate the effect of e-visit adoption on patient health and physician productivity using a panel dataset from a primary care provider in the US.
1 - Optimal Operation Strategy of Intelligent Health Information Service Considering Dynamic Consuming Behavior
Haiyan Wang, Southeast University, School of Economics & Management, Sipailou 2, Nanjing, 210096, China, hywang@seu.edu.cn

Intelligent health information (referred to as IBIS) has been proved to be an effective method for health management. However, few current researches consider the dynamic pricing and operation mechanism; to fill this gap, this research proposes a dynamic IBIS pricing model. Results show: (1) The best strategy is to give a 'free-charge period' before charging a fee for customized service. (2) The platform change rate of potential customers has a significant influence on the public service effort.

2 - Analysis of Health Information Exchange as a Multi-sided Market
Weili Xue, Southeast University, Hankou Road 22, Nanjing, China, welli@seu.edu.cn

In this talk, we are to establish a single stage equilibrium model for the healthcare information exchange from the perspective that the platform performs as a multi-sided market. We analyze how the participants' behavior, the network effect influence the sustainability of the platform and the structure of the market.

3 - Service Systems Decision of Health Data Bank for Different Users
Yixin Liang, Southeast University, Nanjing, China, 542793435@qq.com; Linlu Zhao

This paper relies on health data bank, to explore the optimal provision decision of medical services based on health care big data. The study designed decision-making mechanisms including the health management programs for healthy people, the treatment programs for the patients, and the health care services for rehabilitation to improve the value of health care data.

3 - Hospital-physician Gainsharing Contracts
Diwakar Gupta, University of Minnesota, 1308 Mechanical Engineering, 111 Church Street SE, Minneapolis, MN, 55455, United States, guptad@umn.edu, Milli Mehrrota, Xiaoxu Tang

Episode Payment Models allow participants to realize gains from cost reduction and to share them with collaborators. We develop gainsharing contracts that do not implicate the Social Security Act, mitigate agency costs, and impact of different levels of risk aversion.

4 - Humanitarian Healthcare Services: Resilient Data and Information Processing Systems
Pervaiz Akhtar, Senior Lecturer (Associate Professor), University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom, Pervaiz.Akhtar@hull.ac.uk

This study prioritizes three resilient data and information processing (RDIP) systems (manual, semi-automated, and fully-automated) by utilizing the literature review and analytic network process approach. Results indicate that fully-automated systems are more effective to build RDIP systems for humanitarian healthcare services. This attributes to key determinants, contemporary dimensions and enablers such as the Internet of Things, Big Data collection and analytics, drone applications, data mining skills, among others). Also, semi-automated systems play a key role for certain enablers. The implications arising from the finding are further discussed for healthcare practitioners.
WB05
Schadlee Zaal, Third Floor
Optimization Approaches for Healthcare Decision-Making under Uncertainty
Invited: Health Operations Management
Invited Session
Chair: Alba Rojas-Cordova, Virginia Tech, Blacksburg, VA, 24060, United States, albarc@vt.edu
1 - Robust Post-donation Blood Screening under Prevalence Rate Uncertainty
Hadi El-Amine, George Mason University, 4310 Cotswolds Hill Ln, Fairfax, VA, 22030, United States, helamine@gmu.edu, Douglas Bish, Ebru Bish
Blood product safety, in terms of being free of transmissible infections, is crucial. Under prevalence rate uncertainty, various objective functions, including minimization of the maximum regret, were considered in order to determine a “robust” post-donation blood screening strategy that minimizes the risk of releasing an infected unit of blood into the blood supply. Efficient and exact algorithms are provided.

2 - Optimal Inventory Control for Drug Supply
Nan Kong, Purdue University, 206 South Marting Jischke Drive, Biomedical Engineering, West Lafayette, IN, 47906-2032, United States, nkong@purdue.edu, Wei-An Chen
As clinical trials face increasing challenges such as high cost, development delays, competition among trial sites, a drug supply analytics tool is needed. We propose an innovative inventory optimization model that incorporates features of clinical supplies. Compared to the classic model, our model involves free-stopping mechanism and inverse-discount factor. We use the model to tradeoff the operational cost and early trial termination loss under patient subject enrollment uncertainty.

3 - Optimal Processing of Human Donor Milk
Lisa M. Maillart, University of Pittsburgh, 1030 Benedum Hall, Pittsburgh, PA, 15261, United States, maillart@pitt.edu
Donated breast milk — collected, processed and dispensed via non-profit milk banks in the U.S. — is the standard of care for premature and unhealthy infants whose mothers cannot provide adequate supply. We formulate mixed-integer programs to optimize the daily decisions involved in the pooling of milk from different donors to meet macronutrient requirements across different product types, and the batching of pooled milk for efficient pasteurization. Our numerical results demonstrate significant improvements compared to historical decisions at our partner milk bank.

4 - Optimal Resource Allocation for Sequential Adaptive Clinical Trials
Alba Rojas-Cordova, Virginia Tech, 1253 Progress Street NW Apt. 48001, Blacksburg, VA, 24060, United States, albarc@vt.edu, Ebru Korulur Bish
Adaptive clinical trials for new drugs promise significant benefit to both the pharmaceutical industry and the patients, but complicate resource allocation. We study the sequential resource allocation decision in the context of Phase 3 group sequential adaptive trials, which allow for early trial termination, and quantify the impact of interim analyses on the new drug’s misclassification risk and time-to-market, as well as the firm’s profit. To this end, we build a stochastic dynamic programming model that incorporates Bayesian updates on the drug’s efficacy. We study structural properties of an optimal resource allocation strategy and perform a numerical analysis based on realistic data.

WB06
Van Beuningen Zaal, Third Floor
Optimization of Medical Decision Making for Chronic Diseases
Invited: Medical Decision Making
Invited Session
Chair: Selin Merdan, University of Michigan, Ann Arbor, MI, 48105, United States, smerdan@umich.edu
1 - Optimizing Medical Treatment Decisions for the Prevention of Heart Attack and Stroke
Lauren N. Steimle, University of Michigan, 3261 Bolgos Circle, Ann Arbor, MI, 48105, United States, steimle@umich.edu, Weiwu Li, Jeremy Sussman, Rodney Hayward, Brian T. Denton
Treatment of blood pressure and cholesterol is crucial in the prevention of major cardiovascular events. We present a stochastic model developed from longitudinal patient data from electronic health records to model the progression of these risk factors over time. We discuss approaches for addressing missing data and other sources of bias that confound model development. Finally, we describe a method for optimizing treatment decisions, and present results using data from a large U.S. population.

2 - Impact of False Positives on the Cost-effectiveness of Lung Cancer Screening
Iakovos Toumazis, Stanford University, Department of Radiology, James H. Clark Center, Room S235, Stanford, CA, 94305-5446, United States, iakovos.toumazis@stanford.edu, Emily Tsai, Ayca Erdogan, Summer Han, Ann Leung, Sylvia Plevritis
We assess the benefits and cost of various screening strategies for lung cancer (LC) using a data driven microsimulation model. We simulate individuals’ LC progression in the presence and absence of screening strategies, which vary in terms of starting and stopping age, screening frequency, and smoking criteria. We identify the efficiency frontier and show that the cost-effectiveness of LC screening is significantly affected by the management of false-positive results. We examine the effect of the number of subsequent exams and disutility associated with false-positives, and conduct univariate sensitivity analyses to test the robustness of our findings to changes in key input model parameters.

3 - Robust Optimization Framework to Account for Prediction Errors for Cancer Diagnosis
Selin Merdan, University of Michigan, 1640 Mcintyre Street, Ann Arbor, MI, 48105, United States, smerdan@umich.edu, Brian T Denton
Multiple diagnostic tests are often available for diagnosing diseases such as cancer; however, how best to use these tests to render a diagnosis is challenging because there is often a tradeoff between the benefits of diagnosis and the harms and costs associated with the diagnostic tests themselves. We present a robust optimization model for determining the optimal assignment of composite diagnostic tests based on individual patient risk factors to achieve an optimal balance between the benefits and harms of diagnostic tests. We further provide a specific example in the context of radiologic imaging to detect metastatic prostate cancer.

WB07
Willem Burger Zaal
HAS Student Paper Competition
Sponsored: Health Applications
Sponsored Session
Chair: Sarang Deo, School of Business, ISB Campus, Gachibowli, Hyderabad, 500032, India, sarang_deo@isb.edu
Co-Chair: Greg Zaric, Ivey Business School, Ivey Business School, 1255 Western Road, London, ON, N6G 0N1, Canada, gzaric@ivey.uwo.ca
1 - Managing Appointment-based Services in the Presence of Walk-ins
Shan Wang, Shanghai Jiao Tong University, Xuhui District, 1954 Huashan Road, Shanghai, 200030, China, wangshansen_731@sjtu.edu.cn

2 - Robust Defibrillator Deployment under Cardiac Arrest Location Uncertainty via Row-and-Column Generation
Auwyn Siddiq, UC Berkeley, Berkeley, CA, United States, auyon.siddiq@berkeley.edu
3 - The Effect of Online Reviews on Physician Demand: A Structural Model of Patient Choice
Yuqian Xu, New York University, 44 West 4th Street, New York, NY, 10012, United States, lillian.xyq@gmail.com

4 - Routing and Scheduling with Synchronization and Stochastic Durations: Applications in Home-Healthcare and Operating Rooms Scheduling Problems
Seyed Hossein Hashemi Doulabi, Polytechnique, Montreal, QC, 02215, Canada, hashemi.doulabi@polymtl.ca

5 - A Causal Tree Approach for Personalized Health Care Outcome Analysis
Guilhua Wang, University of Michigan, 1209 Mcity Drive, Ann Arbor, MI, 48105, United States, guilhua@umich.edu

■ WB08
Ruys Zaal, Fourth Floor
Operations Research and informations Systems for Healthcare Efficiency

Invited Session
Chair: Beste Kucukyazici, McGill University, Montreal, QC, H3A 1G5, Canada, beste.kucukyazici@mcgill.ca
Co-Chair: Kartik Krishna Ganju, Temple University, Philadelphia, PA, 19122, United States, tuc67632@temple.edu

1 - Redesigning the Emergency Department to Improve Flow and Reduce Waiting Times
Dmitry Krass, University of Toronto, Rotman School of Management, 105 St George Street, Toronto, ON, M5S 3E6, Canada, krass@rotman.utoronto.ca, Opher Baron, Tianshu Lu

The head of emergency department (ED) at Southlake Hospital in Newmarket, ON, Dr. Marko Duc has developed a rather radical new design for the ED that affects almost every aspect of how ED is configured and functions. In the last few years the ED at Southlake has been ranked #1 with respect to TPIA (Time to Physician Initial Assessment) in Ontario. In this talk we document the key aspects of new design and present empirical evidence of its efficiency. In particular we show that the efficiency gains were not a result of either exogenous factors or increased resource usage, but were indeed due to the new design of the ED.

2 - Just What the Doctor Ordered? Physician Mobility after the Adoption of Electronic Health Records
Kartik Krishna Ganju, McGill University, Montréal, QC, H3A 2M1, Canada, kartik.ganju@mcgill.ca

In this paper, we investigate how the implementation of electronic health record systems (EHRs) affects physician mobility and the decision to continue practicing at their current hospital. Despite recent claims, results do not suggest that such technology adoption is associated with accelerated retirement on the part of physicians.

3 - On Reducing Consultation Wait Times in ED
Beste Kucukyazici, McGill University, 1001 Sherbrooke West, Montreal, QC, H3A 1G5, Canada, beste.kucukyazici@mcgill.ca, Cheng Zhu, Rick Mah

This study focuses on reducing emergency department overcrowding by shortening waiting times for a consultation by a specialist. In this context, we develop a stochastic dynamic modeling to study the prioritization of patients by ED physicians to facilitate the consultation request as well as a queuing model to optimize the response time of specialists to these requests. This study provides important managerial insights for hospitals of different sizes as well as specialty portfolios.

■ WB09
Van Rijckevorsel Zaal, Fourth Floor
Scheduling and Planning II

Contributed Session
Anders Nordby Gullhav, Norwegian University of Science & Technology, Department of Industrial EC & Tech Man, Trondheim, 7491, Norway, anders.gullhav@iot.ntnu.no

1 - A Simulation Based Neighborhood Search Algorithm to Schedule Patients at a Multi-facility Healthcare Diagnostic Center
Varun Jain, Indian Institute of Technology Madras, Department of Management Studies, IIT Madras, Chennai, 600036, India, varunjain.vj.3@gmail.com, Usha Mohan

Random arrival of multi category patients with different priority levels at a multi facility diagnostic center is modelled. Sequential decision making under uncertainty is captured using Markov Decision Process (MDP) with the objective of maximizing net revenue and used Dynamic Programming (DP) to solve it. To address dimensionality and scalability issues of MDP, Decentralized MDP (D_MDP) formulation is proposed. Simulation Based Neighborhood Search Algorithm (SBNSA) was employed to improve DP solution for D_MDP. These solutions were compared with three other rule-based heuristics using simulation.

2 - Outpatient Scheduling Considering Unpunctuality
Jiafu Tang, Professor, Dongbei University of Finance and Economics, Jianshan Str. 217, Shahekou District, Dalian, 116025, China, jftang@mail.neu.edu.cn

We extend the outpatient appointment scheduling to consider patient’s arrival unpunctuality and try to answer the questions: does the optimal appointment interval under unpunctuality still display the shape of dome, what do the system performances behave, and which types of unpunctuality behaviors is the most impact. A stochastic programming model is developed to help hospital manager determine a set of appointment intervals for outpatient admitting unpunctuality, towards minimizing the weighted patient waiting times, doctor’s idle time and overtime. Series of numerical experiments are designed to test how schedule adjusts to accommodate the uncertainty of unpunctuality.

3 - Appointment Scheduling at the MRI Labs of a Norwegian Hospital
Anders N. Gullhav, Norwegian University of Science and Technology, Department of Industrial Ec & Tech Man, Trondheim, 7491, Norway, anders.gullhav@ntnu.no, Marielle Christiansen, Anders R. Ellertsen, Bjorn Nygreen, Hanna M. Selvaag

The increasing demand for health care services combined with the targets for high utilization and low waiting time, the appointment scheduling at hospitals is unmanageable without decision support. We study the appointment scheduling at the MRI (magnetic resonance imaging) labs of a major Norwegian hospital, serving both inpatients and outpatients, with different priorities. The arrival of requests for scans is stochastic, and the length of a scan varies. We simulate the appointment process to test different scheduling approaches on real data.

2 - The Development of Patient-centered Healthcare Delivery System: An Indian Case Study
Pradip Kumar Ray, Professor, Indian Institute of Technology Kharagpur, Kharagpur, kharagpur, 721302, India, pkray2010@gmail.com, Abhik Patra
The rapid change of the dynamics of the health care delivery system and patient satisfaction and expectation, as well as an increasing and diversified complex healthcare environment, has exerted the pressure on the healthcare providers to reevaluate the managerial decision based on the consequences of patient-centered care. A Quality Function Deployment-led model is developed through the cooperation between patients, healthcare providers and healthcare personnel for the patient-centered health care delivery system by counteracting the patient’s expectation. The managerial model is deployed in an acute-care hospital in India for efficacy.

3 - Personalized Online Portal Services and Patient Readmission
Soheil Sibdari, University of Massachusetts, 1933 Commonwealth Avenue, Unit 408, Brighton, MA, 02135, United States, ssibdari@umassd.edu
In this research we study the impact of online portals on patient knowledge and satisfaction with health services. Using available data we provide a personalized method to offer targeted and automated services for individual patient. In a case framework, we also measure the impact of such technology on patient knowledge and address to what extent personalized information and health tips might lower patient readmission.

4 - Health Behavior of Hay Fever Sufferers
Anna Muzalyova, Scientific assistant, University of Augsburg, Neusaesser Straße 47, Augsburg, 86156, Germany, anna.muzalyova@unikat.uni-augsburg.de
Allergic rhinitis (AR) is the most frequent allergic disorder in pollen sensitized people and a major disease in European population. We investigated the health behavior of AR sufferers so as to evaluate the level of their well-being by undertaking an explorative cross-sectional survey. AR exhibited a significant impact on daily activities and caused substantial loss of productivity. Still, there was a high rate of undiagnosed and unexplained allergies and improperly treated AR sufferers.

2 - The Development of Patient-centered Healthcare Delivery System: An Indian Case Study
Pradip Kumar Ray, Professor, Indian Institute of Technology Kharagpur, Kharagpur, kharagpur, 721302, India, pkray2010@gmail.com, Abhik Patra
The rapid change of the dynamics of the health care delivery system and patient satisfaction and expectation, as well as an increasing and diversified complex healthcare environment, has exerted the pressure on the healthcare providers to reevaluate the managerial decision based on the consequences of patient-centered care. A Quality Function Deployment-led model is developed through the cooperation between patients, healthcare providers and healthcare personnel for the patient-centered health care delivery system by counteracting the patient’s expectation. The managerial model is deployed in an acute-care hospital in India for efficacy.

3 - Personalized Online Portal Services and Patient Readmission
Soheil Sibdari, University of Massachusetts, 1933 Commonwealth Avenue, Unit 408, Brighton, MA, 02135, United States, ssibdari@umassd.edu
In this research we study the impact of online portals on patient knowledge and satisfaction with health services. Using available data we provide a personalized method to offer targeted and automated services for individual patient. In a case framework, we also measure the impact of such technology on patient knowledge and address to what extent personalized information and health tips might lower patient readmission.

4 - Health Behavior of Hay Fever Sufferers
Anna Muzalyova, Scientific assistant, University of Augsburg, Neusaesser Straße 47, Augsburg, 86156, Germany, anna.muzalyova@unikat.uni-augsburg.de
Allergic rhinitis (AR) is the most frequent allergic disorder in pollen sensitized people and a major disease in European population. We investigated the health behavior of AR sufferers so as to evaluate the level of their well-being by undertaking an explorative cross-sectional survey. AR exhibited a significant impact on daily activities and caused substantial loss of productivity. Still, there was a high rate of undiagnosed and unexplained allergies and improperly treated AR sufferers.

2 - The Development of Patient-centered Healthcare Delivery System: An Indian Case Study
Pradip Kumar Ray, Professor, Indian Institute of Technology Kharagpur, Kharagpur, kharagpur, 721302, India, pkray2010@gmail.com, Abhik Patra
The rapid change of the dynamics of the health care delivery system and patient satisfaction and expectation, as well as an increasing and diversified complex healthcare environment, has exerted the pressure on the healthcare providers to reevaluate the managerial decision based on the consequences of patient-centered care. A Quality Function Deployment-led model is developed through the cooperation between patients, healthcare providers and healthcare personnel for the patient-centered health care delivery system by counteracting the patient’s expectation. The managerial model is deployed in an acute-care hospital in India for efficacy.

3 - Personalized Online Portal Services and Patient Readmission
Soheil Sibdari, University of Massachusetts, 1933 Commonwealth Avenue, Unit 408, Brighton, MA, 02135, United States, ssibdari@umassd.edu
In this research we study the impact of online portals on patient knowledge and satisfaction with health services. Using available data we provide a personalized method to offer targeted and automated services for individual patient. In a case framework, we also measure the impact of such technology on patient knowledge and address to what extent personalized information and health tips might lower patient readmission.

4 - Health Behavior of Hay Fever Sufferers
Anna Muzalyova, Scientific assistant, University of Augsburg, Neusaesser Straße 47, Augsburg, 86156, Germany, anna.muzalyova@unikat.uni-augsburg.de
Allergic rhinitis (AR) is the most frequent allergic disorder in pollen sensitized people and a major disease in European population. We investigated the health behavior of AR sufferers so as to evaluate the level of their well-being by undertaking an explorative cross-sectional survey. AR exhibited a significant impact on daily activities and caused substantial loss of productivity. Still, there was a high rate of undiagnosed and unexplained allergies and improperly treated AR sufferers.
3 - Optimizing Distribution of Pandemic Influenza Antiviral Drugs
Bismark Singh, University of Texas at Austin, Austin, TX, 78703, United States, bismark.singh@utexas.edu
We provide a method for optimizing pharmacy-based distribution of antivirals during an influenza pandemic in terms of overall access, and apply it to Texas, USA. We found that during the 2009 influenza pandemic, Texas achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point) but only 34.5% in small ZIP codes. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. This model was developed as a collaboration with public health officials and is available as a Web-based decision support tool.

4 - Estimating Disease Burden of a Potential H7N9 Pandemic Influenza Outbreak in the United States
Walter A Silva, PhD Candidate, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, United States, silvaswal@gmail.com, Tapas K. Das
Since spring 2013, periodic emergence of avian influenza A(H7N9) virus in China has heightened concerns for a possible pandemic outbreak. Till January 2017, A(H7N9) has resulted in 918 laboratory-confirmed cases of human infections causing 359 deaths. The aim of this research is to present disease burden estimates from a potential A(H7N9) pandemic outbreak throughout the United States. The method uses a machine learning technique, an agent based simulation model and non-pharmaceutical interventions. We used U.S. demographic and epidemiological available reports. The results show that an A(H7N9) pandemic is likely to impact the lower age group at twice the rate as that of the other age groups.

WB13
Van Weelde Zaal, Fourth Floor
Data-Driven Algorithms for Healthcare Problems
Invited: Healthcare Data Analytics and Machine Learning
Invited Session
Chair: Hamsa Sridhar Bastani, Stanford University, Stanford, CA, 94305, United States, hsr@stanford.edu
1 - Data-driven Approaches to Improve the Kidney Allocation System
Nikolaos Trichakis, MIT, 100 Main Street, E62-576, Cambridge, MA, 02143, United States, ntrichakis@mit.edu, Chaitanya Bandi, Phoebe T. Vayanos
We present a data-driven optimization approach to estimate wait times for individual patients in the U.S. Kidney Allocation System, based on the very limited system information that they possess in practice. To deal with this information incompleteness, we develop a novel robust optimization analytical framework for wait time estimation in multiclass, multiserver queuing systems. We calibrate our model with highly detailed historical data and illustrate how it can be used to inform medical decision making and improve patient welfare.

2 - Optimal Timing of Diabetes Treatment with Multiple Drugs
Shasha Han, NUS Business School, Biz 2 Building B1, 1 Business Link, PhD Office, Singapore, shashahan@nus.edu, Joel Goh Diabetes is a leading chronic condition worldwide that predisposes patients to cardiovascular conditions. Effective management of cholesterol and blood pressure levels using drugs can reduce the incidence of these negative cardiovascular outcomes. Existing guidelines for drug therapy are very broad. In this study, we develop targeted guidelines for diabetic patients based on observable demographic characteristics using a Markov Decision Process model. The model is calibrated from data drawn from a national registry of diabetic patients in a metropolitan South East Asian nation.

3 - Bayesian Bandits for Sequential Clinical Trials of Multiple Technologies
Ozge Yapar, The Wharton School of University of Pennsylvania, 3730 Walnut Street, 500 Jon M. Huntsman Hall, Philadelphia, PA, 19104, United States, yapar@wharton.upenn.edu, Stephen E. Chick, Noah Gans
We focus on the design of multiarm multistage (MAMS) clinical trials. We build on two trends, on the one hand allowing for more than two arms in a trial and on the other using information accumulated during a trial to modify its experimental design as the trial progresses. We frame the problem as a stoppable bandit problem with multiple correlated arms, and we allow for arbitrarily many stages of sampling by using a diffusion approximation that allows for adaptive stopping rules. We develop new allocation and stopping rules that can be used in fully sequential sampling algorithms.

4 - Avoiding the Exploration-exploitation Tradeoff in Online Decision-making
Hamsa Sridhar Bastani, Stanford University, 10 Comstock Circle, Apt 304, Stanford, CA, 94305, United States, hsr@stanford.edu, Mohnsen Bayati, Khahayar Khostravi
The contextual bandit literature focuses on an exploration-exploitation tradeoff because exploration-free greedy policies may yield poor performance in general. However, greedy policies are desirable when experimentation is costly or unethical (e.g., clinical settings). We posit a sufficient set of additional assumptions under which a greedy policy is asymptotically optimal. Next, we present Greedy-First, a new algorithm that uses observed data to determine whether to follow a greedy policy or to explore. This algorithm is asymptotically optimal without our additional assumptions, and significantly reduces experimentation in simulations.

Wednesday, 2:30pm - 3:30pm

WP01
Poster Session
Van der Mandele Zaal & Juriaanse Foyer
1 - Factors Influencing Choice of Health System Access Level in China
Yun Liu, PhD Student, Erasmus University Rotterdam, Bayle Building-Campus Woudenstein Burgemeester Oudlaan 50, Rotterdam, 3062PA, Netherlands, liu@bmg.eur.nl, Qingxia Kong, Shasha Yuan, Joris Van De Klundert
The imbalances in health system access and utilization among higher and lower level facilities in China reduce effectiveness and efficiency. We present a systematic review of the factors affecting patient choice of health system access. The results identified patient factors, provider factors, context factors and composite factors. Among the most frequently mentioned factors (drug variety, perceived quality, transportation convenience and equipment), less drug variety, obsolete equipment and perceived poor quality appear to push patients from lower level to higher level facilities. Further research is required to advance the evidence on effect sizes and the interactions between factors.

2 - Evaluation of On-line Bin Packing Algorithm for Surgical Case Assignment
Boon Yew Ang, Analyst, Singapore Health Services, Singapore, 169856, Singapore, ang.boon.yew@singhealth.com.sg, Shao Wei Sean Lam, Wee Kiang Andrew Tan, Li Ying Karina Ng, Teh Mei Goh, Chen Ee Lee, Eng Rok Marcus Ong, Kevin Lim, Hiang Khoon Tan
Operating theatre (OT) surgical case assignment (SCA) is an essential process which involves assigning hospital surgeries to available OT slots. On-line bin packing (OBP) algorithms are commonly used for such scheduling decisions. A discrete-event simulation model for a large public hospital in Singapore was developed and used to compare various OBP algorithms for the OTSCA.

3 - Proactive and Dynamic Inventory Policies for Mitigation and Prevention of Drug Shortages
Jacqueline Griffin, Northeastern University, 360 Huntington Avenue, 334 Snell Engineering Center, Boston, MA, 02115, United States, ja.griffin@northeastern.edu, Rana Azghandeh
Over the past decade, there has been an epidemic of drug shortages plaguing the U.S. While efforts have been made to address robustness of pharmaceutical supply chains, the shortages persist. Two common drivers of drug shortages are (1) the disruptions in manufacturing and (2) the responses by decision makers throughout the supply chain to these disruptions. To understand and characterize the relationship between these drivers we develop a systems dynamics model. We find that the best inventory policies, for various decision makers, evolve with the type of disruption. Further we develop a stochastic modeling approach to identify optimal inventory policies pertaining to system characteristics.

4 - The Effect of Wearable Devices and Gamification on Adopting Healthier Lifestyle
Abdullah Al Nuaim, University of Colorado Denver, 1475 Lawrence St, Denver, CO, 80202, United States, abdullah.alnuaim@ucdenver.edu, Mohammed Khohjia
Fitness trackers have been promoted as a means for adults and children to adopt an active and healthy lifestyle. However, such a claim has not been empirically tested. Our study aims to fill this gap by using a randomized control trial (RCT). Participants will be randomly assigned to control group or one of two treatment groups with different level of treatments. The results should inform healthcare professionals, educators, policy makers as well as consumers about the effect of such approach.
5 - Simulating Hand-washing Behaviour and Influenza Transmission from Health Initiative Studies Amongst University Students
Omid Mohammad, Concordia University, 1515 Saint-Catherine West, E. V 53330, Montreal, QC, H3G 2W1, Canada, omid3713@gmail.com, Ketra Schmitt

We investigate the effects of participating in health awareness initiatives amongst university students and simulate their resulting behaviour in an agent-based model. Only students in the treatment group are educated by a healthcare expert on the appropriate actions and necessity of hand-washing. From both the treatment and control group, data is collected in the form of questionnaires and used for simulating the interactions of students and their hand-washing behaviour in a school setting.

6 - Optimal Resource Allocation for Network Protection Against Epidemic Processes
Victor Manuel Preclado, Raj and Neera Singh Assistant Professor, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, 19103, United States, preciado@seas.upenn.edu

We study the problem of containing epidemics outbreaks taking place in an arbitrary network by distributing protection resources throughout the nodes of the network. We consider two types of protection resources: (i) Preventive resources able to defend nodes against the spread and (ii) corrective resources able to neutralize the spread after a node has been infected. We assume that both types of resources have an associated cost and study the problem of finding the cost-optimal distribution of resources throughout the nodes of the network. We show that for a wide class of cost functions, this problem can be solved in polynomial time using Geometric Programming (GP).

7 - Research on Medical Information Sharing of Medical Consortium in China Based on Evolutionary Game Theory
Qiang Zhang, Shanghai Jiao Tong University, Shanghai, China, qz6670418@stu.edu.cn

Based on evolutionary game theory, an evolutionary game model between hospitals and governments is established and the equilibrium state under different conditions are studied. The results show that reducing the risk cost of information sharing, standardizing and improving the quality of information sharing in the hospital, making attractive reward and proper punishment policy are the key factors to promote the medical information sharing. The results can provide a reference for governments to establish reward and punishment mechanism to stimulate information sharing.

8 - A Hybrid Genetic Algorithm with 2-D Encoding for Solving the Rehabilitation Patient Scheduling Problem
Nhât-To Huỳnh, National Tsing Hua University, Hsinchu, Taiwan, hnto@dtu.edu.vn

To enhance the patients’ satisfaction and operation efficiency, this study proposed a hybrid genetic algorithm that combines genetic algorithm and simulated annealing to solve the rehabilitation patient scheduling effectively and efficiently. A special 2-dimensional encoding method was used to represent the graduated characteristics of patients and their operations. In addition, a heuristic time-algorithm was developed for decoding a sequence into the best solution. To validate the proposed approach, several experiments were conducted based on the real data in rehabilitation hospitals in Taiwan.

9 - Optimal Treatment Strategies for Glycemic Control for Patients with Type 2 Diabetes
Fanwen Meng, National Healthcare Group, 3 Fusionopolis Link, #03-08, Nexus@One-North, Singapore, 138543, Singapore, fanwen_meng@nhg.com.sg, Yan Sun, Melvin Khew Siling Leow

In Singapore, diabetes is one of most common chronic diseases with a prevalence rate of 13% and one of the top 6 causes of death in 2015. A central focus in management of type 2 diabetes is glycemic control. In this study, we aim to determine optimal treatment policy of medication initiation for glycemic control using a Markov decision process model. We compare the derived treatment strategy with current protocol in Singapore. Preliminary numerical analysis demonstrates the improvement on expected QALYs compared with the current practice. The proposed model would facilitate clinical decision making process and help clinicians to make informed treatment decisions for patients with type 2 diabetes.

10 - Operating Room Re-scheduling After a Large Disruption to the Post-anesthesia Care Unit Beds
Danial Khorsasani, Isfahan University of Technology, Isfahan, 8415683111, Iran, Islamic Republic of, d.khorsasani@iut.ac.ir, Franklin Dexter, Ghasem Moslehi

In 2014, a sudden pipe burst resulted in loss of post-anesthesia care unit (PACU) beds in a large hospital in Boston. Some alternative beds were used for patient recovery, but capacity was less than baseline, causing many cancellations. Analogously, operating room (OR) rescheduling after an unexpected decrease in PACU beds, physical and/or nursing is considered in this paper. It is assumed that patients can be recovered in ORs or PACU, and objective is to minimize cancellations. The model can solve all instances with 4 ORs and any number of PACU beds. For instances with up to 10 ORs and any number of PACU beds, efficient solution is obtained heuristically by a hybrid method.

11 - The Main Opportunities & Challenges of Private Medicine in Low And Middle Income Countries of Eastern Europe
Tetyana Sandulovych, Commercial Head, Medical Plaza, Multidisciplinary Clinic, 1411 A. Polya Ave, Dnipro, 49055, Ukraine, zorievna7@gmail.com

In Eastern Europe, Ukraine and Belarus, there are more than 51 million people. Healthcare systems in these countries are in transition from an outdated model of Healthcare (inherited from the Soviet Union) to a modern, efficient models of healthcare system. Private medical centers have the little share of the market (about 10 per cent of Health care), but reflect the need for patients to high-quality medical services.

12 - Nurses’ Work with Interruptions: An Objective Model for Testing Interventions
Robert A. Myers, Wright State University, 3640 Colonel Glenn Highway, 207 Russ Engineering Center, Dayton, OH, 45435, United States, robert.a.myers@wright.edu, Pratik J. Parikh

We present a model of nurses’ work, comprehending both detrimental and beneficial interruptions, and generating insights into the onset of interruptions and the evaluation of interventions. Our data driven model was informed by observation of nurses in a trauma center, including 259 interruptions during 580 nursing activities. The resulting stochastic non-stationary model, with source and activity-dependent interruptions, is instantiated as a simulation and demonstrated using interventions simulating ‘do not disturb’ strategies and a more focused ‘triaging’ of phone calls.

13 - Piecing Multiple Sclerosis Together through Mobile Technology
Fletcher Lee Hartsell, Clinical Assistant Professor, Duke University, 200 Trent Dr, Durham, NC, 27710, United States, lee.hartsell@duke.edu

Multiple sclerosis (MS) is an immune-mediated neurodegenerative disorder whose course is the culmination of a complex and prolonged interplay between genetics, environmental factors, and human behavior. MS Mosaic is a longitudinal study that takes advantage of recent innovations in smartphones, wearable sensors, cloud computing, and machine learning to collect, store, and analyze nearly continuous data from an engaged community of participant collaborators, thereby accelerating discovery and facilitating responsive and personalized health care.

14 - Redesign of Patient Flow and Resource Allocation in a High-volume Emergency Department
Sakine Batun, Middle East Technical University, Department of Industrial Engineering, Middle East Technical University, Ankara, 06800, Turkey, sakine@metu.edu.tr, Alpın Layda Ozmen, Deniz Tanrıkut, Gökçem Yi it, Medya Teke, Nur Keskin, Melih Celik

We consider the operations of a high-volume emergency department where the waiting times are above the acceptable levels for a significant proportion of the patients. We describe the system by using a detailed simulation model and utilize this model evaluate the impact of various improvement opportunities such as using different policies about the patient flow (e.g., about triage method, patient prioritization, patient streaming) and resource allocation (e.g., about allocation of staff to shifts and patient group).

15 - The Impact of Competency Frameworks to Improve Leadership Performance in Healthcare Organisations. The Case of the Kingdom of Saudi Arabia
Nasman Alargni, PhD Researcher, Cranfield University, 313 South Row, Milton Keynes, MK9 2HF, United Kingdom, n.a.alargni@cranfield.ac.uk, Dr. Patrick McLaughlin, Dr. Ahmed Al-Ashab

This study proposes a theoretical framework to address how leadership competency strengthens the relationship between leaders and followers in order to improve leadership performance in the healthcare organizations. This study is expected to contribute to the existing literature on leadership and social identity by providing empirical data regarding the significance of leadership competency to improve leadership performance in this sector. The suggested intervention should enable healthcare organizations to achieve the ideal positions of these developed themes.

16 - Predicting Stroke Onset by Machine Learning using Medical Data, Blood Flow Simulation Data and Blood Vessel Shape Data
Masaaki Suzuki, Tokyo University of Science, Chiba, Japan, m-suzuki@rs.tus.ac.jp, Yu-Chen Chen, Soichiro Fujimura, Takashi Suzuki, Hiroyuki Takao, Toshihiro Ishibashi, Yuichi Murayama, Hayato Ohwada

Stroke is the fourth leading cause of death and the number one cause of bedridden in Japan. A stroke occurs suddenly and it is extremely difficult to predict it. The purpose of this research is to predict stroke by machine learning using medical data and engineering data, and to enable reasonable and optimal treatment according to the onset risk. In this study, we construct highly accurate classifier for stroke prediction using clinical data, computational fluid dynamics simulation data of cerebral blood flow, three-dimensional blood vessel shape data, and also extract dominant factors of onset.
17 - Assessing Connectedness among U.S. Healthcare Facilities to Guide Regional Prevention of Multidrug Resistant Organisms
Rachel Slayton, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States, via3@cdc.gov, Prabash Paul, James Bags, John Jernigan

We used patient-level administrative data to quantify healthcare facility connectedness through patient transfers in Oregon and Washington states. We developed a negative binomial generalized linear model to examine the association between the annual facility-level incidence of Clostridium difficile infections (CDI) and connectedness, adjusting for hospital-level factors. Connectedness was independently associated with CDI incidence; hospitals that were most highly connected had significantly higher rates. Highly connected hospitals might provide a target group for coordinated public health interventions to reduce spread of multidrug resistant organisms regionally.

18 - Impact of Feature Selection on the Performance of Single Classifiers in Predicting Depression in the Elderly: Emphasis on Accuracy and Area under the ROC Curve
Eunyoung Lee, Principal Researcher, CSRI (Creativity Science Research Institute), Seoul, Korea, Republic of, starystar725@gmail.com

By using 1,619 data sample regarding depression in the Korean elderly (2008–2013), this study analyzed the changes in performance of five single classifiers after feature selection (FS). The Best First FS method with backward search selected four out of nine features such as the number of household members, marriage status, activities limit, and stress. Compared with the result prior to FS, the usage of those four features after FS produced statistically significant increase in the accuracy from 0.844 to 0.856 and in the AUC from 0.711 to 0.719. Single classifiers used for the experiment include logistic regression, decision tree, support vector machine, neural network, and naive Bayesian network.

19 - Sepsis Watch: Intensive Care Unit Lab Predictions
Andrea McCartney, Graduate Student, Georgia Institute of Technology, Atlanta, GA, 30332, United States, amccarte@gmail.com, Soorya Eswaran, Srujana Buddi, Kevin Johnson, Kevin Gu, Kshitij Deo, Shamim Nemati, Matthew Stanley, Vibhore Kumar

The Sepsis Watch application predicts the values of six labs which are advance indicators of sepsis. Using the critical care database from the MIT Lab for Computational Physiology, a Gaussian process prediction model was developed for white blood counts, hemoglobin, bilirubin, platelets, creatinine, and lactate. The application, after a physician and patient are selected, launches the display of six screens with both the actual and predicted lab values. When a lab prediction is in the critical range, a mobile message is sent to the physician.

20 - The Most Efficient Critical Vaccination Coverage and its Equivalence with Maximizing the Herd Effect
Lotty Everde, Dujizer, Erasmus University Rotterdam, P.O. Box 1738, Rotterdam, 3000 DR, Netherlands, dujizer@dse.eur.nl, Willem I. Laarsma, van, Jacco Wallinga, Rommert Dekker

We study vaccination in an age-structured population. We prove that minimizing the total critical size that is required to prevent an outbreak in infectious diseases is equivalent with maximizing the herd effect. To find the optimal allocation over the age groups, we prove that a greedy algorithm is optimal for separable mixing. For the general case, we propose an efficient solution method using Perron-Frobenius Theory. We show that the optimal allocation can considerably reduce the required vaccine stockpile.

21 - Best Combination of Base-meta Learner in the Stacking Classifier to Optimize its Performance in Predicting Depression in the Elderly
Kun Chang Lee, Professor, Sungkyunkwan University, Myung Ryun 3-53, Chong No-Ku, Seoul, 03063, Korea, Republic of, kunchanglee@gmail.com, Kun Chang Lee, Professor, SAIST (Samsung Advanced Institute for Health Sciences & Technology), Myung Ryun 3-53, Chong No-Ku, Seoul, 03063, Korea, Republic of, kunchanglee@gmail.com

In the healthcare studies, stacking has been used extensively as one of ensemble classifiers. It is basically composed of base-meta learner. Therefore, how to combine the base-meta learners really matters to the stacking performance. However, there is no study to investigating the best combination of base-meta learners in the stacking to predict depression in the elderly. By using KHNANES data samples and five single classifiers (LR, DT, NN, SVM, NBN), we applied a number of base-meta learner combinations to compute changes in accuracy and AUC. The stacking worked best when LR-DT is used as a base-meta combination, with accuracy 0.852 and AUC 0.798. The combination NN-SVM was the poorest with AUC 0.50.
3 - Incorporating Coverage for Emergency Calls in Scheduling Patient Transportations
Pieter van den Berg, RSM, Burgemeester Oudaan 50, Rotterdam, 3062 PA, Netherlands, vandenberg@rsm.nl, Theresia van Essen

Many ambulance operators provide both advanced life support (ALS) and basic life support (BLS) ambulances. Typically, emergency calls can only be executed by ALS vehicles, whereas non-urgent patient transportations can either be served by an ALS or a BLS ambulance. BLS vehicle capacity does normally not suffice for all transportation requests. The remaining transportations are performed by ALS ambulances, which reduces coverage for emergency calls. We present a model to determine routes for BLS vehicles, so as to maximize the remaining coverage by ALS ambulances.

4 - Do High Risk Neighbourhoods Stay High Risk?: Spatiotemporal Trend Analysis of Out-of-Hospital Cardiac Arrests
Derya Demirtas, University of Twente, Dept. Industrial Engineering & BIS, P.O. Box 217, Enschede, 7500AE, Netherlands, d.demirtas@utwente.nl, Timothy Chan

Cardiac arrest intervention and prevention programs should target geographical areas with high risk of out-of-hospital cardiac arrest (OHCA). Although these long-term, location-based interventions implicitly assume that the geographical distribution of OHCA risk remains stable over time, there is a paucity of evidence to support this assumption. This study measures the spatiotemporal stability of OHCAs at the neighbourhood level in a large Canadian urban setting.

■ WC04

Hudig Zaal, Third Floor
Data Analytics and Machine Learning III
Contributed Session
Chair: Dursun Delen, Oklahoma State University, 700 North Greenwood Avenue, Tulsa, OK, 74106, United States, dursun.delen@okstate.edu

1 - Hierarchical Infinite Factor Models for Improving the Prediction of Surgical Complications Across Hospitals
Katherine Heller, Duke University, Durham, NC, United States, kheller@gmail.com, Elizabeth Lorenzi

In order to better predict surgical complications at a particular hospital, we develop a hierarchical latent factor transfer learning model, which leverages data on surgical complications across all hospitals nationally. Our goal is to build a risk-assessment model for surgery patients in our own hospital, using institutional and national surgical outcomes data. The national surgical outcomes data is collected through NSQIP (National Surgery Quality Improvement Program), a database housing almost 4 million patients from over 700 hospitals. We find that our methodology can model surgical complications well, improving overall predictions at our hospital.

2 - Cluster-based Identification of Heterogeneity in Meta-analysis
Andreas Brieden, Full Professor, UniBW Munich, Werner-Heisenberg-Weg 39, Neubiberg, 85579, Germany, andreas.brieden@unibw.de

In classical meta-analysis fixed or random effect models are frequently applied to estimate the effect of a new medical treatment for the patients. Although these models allow for some heterogeneity in the results of the different studies which have to be integrated it might happen that the degree of heterogeneity is too large to accept the results of the meta-analysis. A typical reason for such an effect could be a significant difference in the study cohorts with respect to relevant clinical parameters. In this talk a two-step approach to handle this heterogeneity is presented. In a first step homogeneous cohorts are computed by means of quadratic optimization, followed by cluster based meta-analyses.

3 - Multicriteria Decision Analysis for Production Capacity and Demand of Patients: A Case Study in a Hospital in Brazil
Thiago Magalhaes Amaral, UNIVASF, Petrolina, Brazil, prof.thiago.magalhaes@gmail.com, Júlia Góes Matos, Ana Cristina Gonçalves Castro Silva

Demand forecasting and multicriteria decision used to support strategic planning of hospital, where it is assumed that demand of may have seasonality trends and more possible alternatives to solve the overcrowding problem. The best alternatives to adjust the hospital’s production capacity to the demand of patients can be chosen using and comparing different demand forecasting models associated with the multicriteria decision method PROMETHEE II. Study show that the linear regression and Holt-Winters multiplicative seasonality method for a period of twelve months have adapted better. Improved flow of information showed the most suitable alternative for solving the problem of the hospital.

4 - Development of a State-of-the-art CDSS for Diabetic Retinopathy
Dursun Delen, Research Director, Professor & Research Director, 700 N. Greenwood Ave., OSU Tulsa, NH341, Tulsa, OK, 74106, United States, dursun.delen@okstate.edu, Saeed Piri

We present the results and the lessons-learned of developing a CDSS for early detection/diagnosis of diabetic retinopathy. Although preventable with early diagnosis, retinopathy is the most common cause of vision loss among diabetic patients. In this study, we analyzed EHR data from more than 1.4M diabetic patients to develop several types of predictive models, each focusing on discerning characteristics of the data/features included and/or different data preprocessing methods employed. Along with the presentation of the comparative analyses (i.e., the prediction accuracy of different models), ranked-importance of variables and practical implications of the CDSS are also discussed.
Healthcare back matter 2017_Healthcare back matter 7/6/17 5:32 PM Page 30

WC05

Managing Health Care Costs and Quality under Uncertainty
Invited: Health Operations Management
Invited Session
Chair: Humnyy Song, The Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, United States, humnyy@wharton.upenn.edu
1 - Yardstick Competition for Service Systems and Hospital Reimbursement
Nicos Savva, London Business School, Regent’s Park, London, NW1 4SA, United Kingdom, nsavva@london.edu, Tolga Tuzcan, Ozlem Yildiz
Yardstick competition is a regulatory scheme for local monopolists (e.g., hospitals), where the monopolist’s reimbursement is linked to her performance relative to other equivalent monopolists. This regulatory scheme provides cost-reduction incentives and has been used for hospital reimbursement throughout the developed world. This paper uses a game-theoretic queuing model to investigate how yardstick competition performs in service systems (e.g., hospital emergency departments), where, in addition to incentivizing cost reduction, the regulator’s goal is to provide incentives to reduce customers’ waiting times.
2 - Gatekeeping under Time Pressure: An Empirical Study of Hospital Admission Decisions in the Emergency Department
Michael Freeman, Judge Business School, University of Cambridge, Trumpington Street, Cambridge, CB2 1AG, United Kingdom, mlf135@cam.ac.uk, Susan Robinson, Stefan Scholles
We study admission decisions made by physicians in a congested ED using a data set comprising more than 600,000 visits over a 7-year period. We find that when the ED becomes busier, physicians make increasingly more observational admissions but also fewer discharge errors. This leads to a bullwhip-type effect: demand surges in the ED leads to relatively greater demand pressures in the hospital. We then identify an intervention that can significantly reduce the negative demand-propagation effect.
3 - Allocating Inpatient Beds to Off-service Patients: Tradeoffs and Consequences
Humnyy Song, The Wharton School, University of Pennsylvania, 560 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA, 19104, United States, humnyy@wharton.upenn.edu, Anita I. Tucker, Ryan Graue, Sarah Moravick, Julius Yang
Given a highly variable patient census at the service line level yet a fixed allocation of inpatient beds to service lines, a significant portion of admitted patients become “off-service” patients. These patients are physically located in a bed that belongs to a different service line while still being cared for by a physician of the service line. We examine the tradeoffs and consequences of assigning incoming patients to an off-service bed as opposed to an on-service bed.

WC06

Panel Session: Developing Natural History Models for Medical Decision Making
Invited: Medical Decision Making
Invited Session
Moderator: Ozguzhan Alagoz, University of Wisconsin-Madison, Madison, WI, 53706, United States, alagoz@engr.wisc.edu
1 - Panel on Developing Natural History Models for Medical Decision Making
Ozguzhan Alagoz, University of Wisconsin-Madison, 3242 Mechanical Engineering Building, 1513 University Avenue, Madison, WI, 53706, United States, alagoz@engr.wisc.edu
Natural history of a disease, which represents the onset and progression of a disease without an intervention, provides critical inputs for operations research models for medical decision making. We will share our experiences in developing natural history models for various diseases including end-stage liver diseases and breast cancer. We will also focus on challenges and opportunities associated with developing natural history models.
2 - Panelist – Natural History Modeling For End-stage Liver Disease And Breast Cancer
Ozguzhan Alagoz, University of Wisconsin-Madison, 3242 Mechanical Engineering Building, 1513 University Avenue, Madison, WI, 53706, United States, alagoz@engr.wisc.edu
3 - Panelist – Using Longitudinal Data to Build Natural History Models
Brian T Denton, University of Michigan, 2893 I0E Building, Dept of Industrial and Operations Engineering, Ann Arbor, MI, 48109-2117, United States, btdenton@umich.edu
4 - Panelist
Aycıa Erdogan, San Joe State University, Davidson College of Engineering, Industrial and Systems Engineering, San Jose, CA, 95192, United States, aycia.erdogan@sjtu.edu
5 - Panelist
Julie Simmons Ivy, North Carolina State University, 111 Lampe Drive, P.O. Box 7906, Raleigh, NC, 27695-7906, United States, jsivy@ncsu.edu

WC08

Mathematical Models of Sepsis and Hospital-Acquired Infections
Invited: Health Operations Management
Invited Session
Chair: Sean Barnes, Univ of Maryland-College Park, College Park, MD, 20742, United States, sbarnes@rhsmith.umd.edu
1 - Personalizing Interventions in Multimorbid Patients with Sepsis
Julie Simmons Ivy, North Carolina State University, 111 Lampe Drive, P.O. Box 7906, Raleigh, NC, 27695-7906, United States, jsivy@ncsu.edu, Nisha Nataraj, Muge Capan, James R Wilson, Ryan Arnold, Jeanne Marie Haddleston
The lack of a gold-standard diagnostic test makes sepsis, the leading cause of in-hospital mortality, difficult to diagnose and necessitates timely intervention. The presence of comorbidities further complicates diagnosis and treatment. This study uses inpatient electronic health records over multiple visits from a large hospital system to develop a simulation-based framework to personalize sepsis intervention strategies based on comorbidity profiles identified via hierarchical cluster analysis.
2 - Agent-based Mediation Modeling of a Controlled Trial to Reduce the Transmission of Multidrug-resistant Organisms
Sean Barnes, Univ of Maryland-College Park, 4352 Van Munching Hall, University of Maryland, College Park, MD, 20742, United States, sbarnes@rhsmith.umd.edu, Daniel Morgan, Lisa Pineles, Anthony Harris
In 2011-2012, the University of Maryland School of Medicine led a 20-site randomized controlled trial to assess the benefits of universal gloves and gowns to reduce the transmission of multidrug-resistant organisms in acute-care hospitals. This intervention resulted in a statistically significant decrease in the acquisition rate for methicillin-resistant Staphylococcus aureus, but the direct effect, relative to secondary effects such as the hand hygiene compliance of healthcare workers and visit rates to patients, was unclear. We develop an agent-based model and, after calibration it across all study sites, use it to estimate the reduction in transmission directly due to this intervention.
3 - MRSA Transmission Dynamics in an Endemic NICU Setting with a Targeted Decolonization Program
Rebecca Pierce, Johns Hopkins Bloomberg School of Public Health, 235 Carroll St. NW, Apt. 417, Baltimore, MD, United States, rpierc13@jhu.edu, Aaron M. Millstone, Justin Lesser MRSA is a leading cause of infection in the NICU. We assessed the impact of decolonization on unit-based MRSA transmission. Retrospective NICU data (2007-2014) were collected. We used MCMC methods to fit a probabilistic transmission model to this data. To account for weekly screening, we imputed MRSA colonization times. 4412 neonates were admitted and screened for MRSA. We observed 84 incident MRSA-positives. The per-day probability of MRSA transmission from decolonized neonates was 93% less than that from MRSA-colonized, non-decolonized neonates (0.0005% vs 0.0086%, ratio=0.05, 95% credible interval ratio: 0.02-0.09). Decolonization appears to reduce risk of MRSA transmission in the NICU.
2 - Public Pharmaceuticals Supply Chain Reform in Morocco
Abdelaziz Berrado, University Mohammed V in Rabat, BP 765, Avenue Ibn Sina, Agdal, Rabat, 10080, Morocco. berrado@eml.ac.ma, Abdelaziz Berrado, Ecole Mohammadia D’Ingenieurs, Rabat, Morocco, berrado@eml.ac.ma.

The Moroccan Ministry of Health seeks the redesign of its public pharmaceutical products supply chain. In this policy framework, we are considering a research direction about the redesign of the distribution network of this SC taking into account the specificity of the health sector in this emerging country. Prior work led to the choice of a distribution network design at a macro level taking into account the preferences of the decision makers at the and patients’ priorities. Now, it is a matter of making decisions concerning facilities’ locations, capacity and roles and to shed light on the appropriate transportation strategy and multi-echelons inventory policies for this SC.

3 - Literature Review the Vaccine Supply Chain
Romnert Dekker, Erasmus University-Rotterdam, Burg.
Oudlaan 50, P.O. Box 1738, Rotterdam, 3000 DR, Netherlands, rdekker@ese.eur.nl. Lotty Everije Dujijer, Willem Jaarsveld, van
In this literature review we classify the literature on vaccine logistics using a supply chain perspective. We distinguish between the following four components: composition, production, allocation and distribution. We find that the vaccine supply chain is characterized by high uncertainty in both supply and demand; asymmetry between supplier, public health organization and end customer; complex political decisions concerning allocation and the crucial importance of deciding and acting in time.

WC11
Van der Vorm Zaal, Fourth Floor
Medical Decision Making III
Contributed Session
Chair: Alejandro Marcano, Karolinska Institutet, K34, Stockholm, 14186, Sweden, alejandro.marcano@ki.se

1 - Estimating the Risk of Reidentification in Healthcare Data
Amir N. Vidyashankar, George Mason University, 4000 University Drive MS4A7, Fairfax, VA, 22030, United States, avidyash@gmu.edu

Estimating the risk of re-identification from de-identified healthcare data is critical due to regulatory and contractual restrictions. In this talk, we describe new composite metrics, robust statistical models and methods for estimating this risk and study their properties. We establish that while our proposed methods facilitate a principled approach for sharing information between healthcare entities, compared to naive approaches, they also minimize the operational cost for a variety of practically encountered cost functions. We also evaluate our methods under model misspecification. We illustrate the impact of the findings on the existing policy using publicly available datasets.

2 - Richness of Home Health Data for Value Based Care and Outcomes
Jakkia Sairamesh, CEO and President, CapsicoHealth, Inc, 2225 E Bayshore Rd STE 200, Palo Alto, CA, 94303, United States, jramesh_88@yahoo.com, Robert Rosati

Home health care (Medicare based) is based on a 60-day episode model which enables a rich data driven (OASIS) foundation for patient quality improvement, appropriate matching of patient needs to services. We will present a rich data platform that brings together clinical, cost and financial data for providers to reduce cost of care, improve quality and prepare for future value based payment programs. We present risk models for ED visit risk and hospitalization showed nearly a 0.82 C-statistic value and a 0.69 PPV value (precision). The models for high utilization showed a C-statistic value of 0.78 for predicting a high PMPM ($2000 per month per member).

WC09
Van Rijckevorsel Zaal, Fourth Floor
Scheduling and Planning III
Contributed Session
Chair: Samuel van Brummelen, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, Netherlands, s.p.j.vanbrummelen@utwente.nl

1 - Outpatient Appointment Scheduling: What is the Problem?
Alex Kuiper, Assistant professor, University of Amsterdam, Plantage Muidergracht 12, Amsterdam, 1018 TV, Netherlands, a.kuiper@uva.nl, Jeroen de Mast
We find that the problem of appointment scheduling has meager substantiation, neither from the perspective of theory in operations management, nor from field studies analyzing the actual objectives and challenges of appointment scheduling in real healthcare operations. Therefore, by means of a multiple case study research, we address two research questions: What is the structure of the problem of appointment scheduling in outpatients clinics? What are current practices and underlying assumptions and conceptualizations in the field? The study is limited to static scheduling in outpatient clinics.

2 - Multi-period Appointment Sequencing and Scheduling
Sakine Batun, Middle East Technical University, Department of Industrial Engineering, Middle East Technical University, Ankara, 06800, Turkey, sakine@metu.edu.tr, Utku Tarik Bilgic
Single-period appointment scheduling for a given sequence of outpatient procedures is a well-studied problem. We consider the problem of determining the sequence of and the appointment times for a given set of surgeries to be operated over a multi-period planning horizon in the presence of patient no-shows and uncertainty in surgery durations. We formulate and solve the problem as a two-stage stochastic program to estimate the value of capturing uncertainty, simultaneous optimization of sequencing and scheduling decisions, and considering a multi-period planning horizon.

3 - Dynamic Appointment Based on Behaviors of Heterogeneous Outpatients
Wens Zhang, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian, Beijing, 100081, China, wens0211@hotmail.com
Considering heterogeneous patients with different service durations, the dynamic appointment problem is modeled as Markov decision process in discrete time to maximize expected profit of the system by drawing upon ideas from capacity allocation. Overbooking policy is deployed to eliminate the impact of patient cancellation and no-show behaviors. Optimal dynamic appointment policy is obtained by backward induction dynamically allocate available capacity to incoming demand. For the purpose of decreasing dimensions of state space, a heuristic method is introduced to solve the problem and the effectiveness of heuristic method has been illustrated by simulation.

4 - Combining Appointments and Walk-in at Dutch Blood Collection Sites.
Samuel P. van Brummelen, Sanquin Research, Amsterdam, Netherlands, s.p.j.vanbrummelen@utwente.nl, Marieke Dijkink, Katja van den Hurk, Wim L. de Kort, Nico M. Van Dijk
The Dutch organization responsible for blood collection and distribution, Sanquin, wants to implement an appointment system for whole blood donors, and aims for 80% of the whole blood donations to use this new system instead of the current walk-in system. We present an approach to schedule the appointments in this new system using a queuing model, taking the already existing appointments for plasma donors and the arrival pattern of the remaining walk-in donors into account.

WC10
Piete Zaal, Fourth Floor
Supply Chains III
Contributed Session
Chair: Romnert Dekker, Erasmus University-Rotterdam, Burg.
Oudlaan 50, P.O. Box 1738, Rotterdam, 3000 DR, Netherlands, rdekker@ese.eur.nl

1 - An Examination of Optimal Strategies to Reduce Smoking Prevalence and Related Intervention Costs: An Optimal Control Problem
Ruoyan Sun, University of Michigan, Ann Arbor, MI, United States, sunry@umich.edu, David Mendez
We construct a time-variant optimal control model to figure out the best combination of initiation & cessation programs over time that minimizes the weighted sum of smoking prevalence & program costs. We obtain the optimal solution to the model analytically & further analyze the ratio of optimal initiation & cessation programs. We use results from two empirical interventions in the UK and the National Survey on Drug Use and Health in the US to set parameter values. The optimal cost ratio starts around 0.14 & increases to 1.74 in 30 years. Smoking prevalence is estimated to be 2.97% with optimal interventions versus the original 8.54% in 30 years. Two extensions of this model are also discussed.
3 - Developing an Artificial Intelligence Hybrid Model Based on Neural Networks in Decision Support Systems in the Field of Medical Data
Roya Soltani, Islamic Azad University Science and Research Branch, Tehran, Iran, Islamic Republic of, royasoltani@iust.ac.ir, Arvin Azizian, Reza Tavakkoli Moghaddam

Considering the importance of predicting cardiac-pulmonary test results on Chemical injuries’ expensive data and the high cost of these tests for chemical injuries, the high time consumption nature of these tests in the stage of performing and results announcement, as well as knowing that at different stages (e.g. user error in recording the results), there is also the possibility of data loss, the missing data and then isolating them have been addressed in the present study and K-means method has been used to fill the missing values.

4 - The Socioeconomic Implications of Treatment – The Role of Multiregistry-based Population Studies in Musculoskeletal Conditions
Alejandro Marcano, MD, Karolinska Institutet, Karolinska Institutet, K34, Stockholm, 14186, Sweden, alejandro.marcano@ki.se, Richard Nordenvall, Pär Karlsson, Martin Gerdin, Johanna Adam, Mårten Palme, Ville Mattila, Shahram Bahmanyar, Li Felländer-Tsai

The effects of medical treatment can extend to the economy and society. A deeper understanding of how treatment choices affect non-clinical outcomes is necessary, especially in orthopedies where restoring optimal physical function is critical. We linked data from national registries and studied how treatment choice affects income, adjusting for sex, age, comorbidities, type of work, region and education.

This population-based model shows how some covariates such as sex, age, level of education and type of work can modify the effect of treatment. The study of covariates supports the decision-making process, guiding the physician about which patients could benefit from surgical procedures.

WC12

Mees Zaal, Fourth Floor
Disease and Treatment Modelling II
Contributed Session
Chair: Jussi Keppo, National University of Singapore, Mochtar Riady Building, BIZ 1 8-69, 15 Kent Ridge Drive, Singapore, 119245, Singapore, keppo@nus.edu.sg

1 - Forecasting Outpatient Visits for Influenza-like Illness in Taiwan
Mei-Ting Tsai, Associate Professor, National Chung Hsing University, 145 Xingda Road, Department of Business Administration, Taichung, 40227, Taiwan, mtsai@dragon.nchu.edu.tw, Jui-Ying Tsai

Studies on Influenza-like Illness (ILI) have been getting lots of attention. During flu seasons, the number of outpatient for ILI is very volatile, which complicates preparation of medical supply. Scholars have tried to forecast ILI from different sources and angles. In addition to the temporal correlation, this study investigates the geographic correlation of ILI patients among cities in Taiwan. Data collected from Centers for Disease Control since 2009 are adopted to construct an empirical example. The proposed models are expected to provide more accurate forecasting results.

2 - Assessing Intervention Strategies for Influenza using a Closed Form Formula for R0
Zeynep Gökcen Yildiz, PhD Student, Bogazici University, Istanbul, Turkey, zeynep.yildiz@boun.edu.tr

The behaviour of agent based disease spread models with overlapping mixing groups is mainly assessed by simulation. We develop a formula that can calculate the exact value of R0 in stochastic SIR models with overlapping mixing groups. It can be used used for parameter calibration and the assessment of different intervention strategies especially household quarantine, use of antiviral drugs and vaccination are considered.

3 - Simulating the Rate of Transmission for Influenza Within an Aircraft Cabin During a Commercial Flight
Mojtaba Zargoush, Concordia University, 1515 Saint-Catherine St W, EV 13-109, Montreal, QC, H3G 2W1, Canada, m.j.zargoush@gmail.com, Ketra Schmitt, Ali Akgunduz

Influenza transmission of communicable disease is often cited as a risk of air travel. However, few studies have investigated the disease dynamics of transmission inflight, particularly during the peak season of a disease. We simulate the rate of transmission of influenza within an aircraft using numerous preventive factors. We implement an agent-based model to evaluate different strategies such as using face masks, regular sanitizing, installing UV lights, and redesigning floor plans such as using curtains between seating, to find solutions to decrease influenza transmission.

4 - Understanding the Swine Flu Epidemic with an Equilibrium Vigilance Model
Jussi Keppo, National University of Singapore, Mochtar Riady Building, BIZ 1 8-69, 15 Kent Ridge Drive, Singapore, 119245, Singapore, keppo@nus.edu.sg, Elena Quercioli, Lones Smith

Contagious diseases are passed on when contagious and susceptible individuals meet. This paper introduces and explores a new matching game, characterized by individuals meeting pairwise, possibly unwittingly passing along a disease in a contagion-like fashion. We assume that individuals can expend costly effort to avoid acquiring it. In this population game, efforts are strategic substitutes: The harder other individuals try, the more lax one can be. We solve for the unique Nash equilibrium when individuals are heterogeneous. We then estimate this structural model and show that it improves on the explanation of the data without endogenous behavior.

WC13

Van Weelde Zaal, Fourth Floor
Public Health Preparedness: Answering (Largely Unanswerable) Questions with Operations Research
Invited: Public Health and Policy Making
Invited Session
Chair: Margaret L. Brandeau, Stanford University, Stanford, CA, 94305-4026, United States, brandeau@stanford.edu

1 - Public Health Preparedness: Answering (Largely Unanswerable) Questions with Operations Research
Margaret L. Brandeau, Stanford University, Management Science and Engineering, 475 Via Ortega, Stanford, CA, 94305-4026, United States, brandeau@stanford.edu

Public health security - achieved by effectively preventing, detecting, and responding to events that affect public health such as bioterrorism, disasters, and naturally occurring disease outbreaks - is a key aspect of national security. However, effective public health preparedness depends on answering largely unanswerable questions. For example: What is the chance of a bioterror attack in the United States in the next five years? What is the chance of an anthrax attack? What might be the location and magnitude of such an attack? This talk describes how OR-based analyses can provide insight into complex public health preparedness planning problems - and thus support good decisions.

Thursday, 8:30am - 10:00am

TA01

Van Cappelen Zaal, Ground Level
Scheduling and Planning IV
Contributed Session
Chair: Ilze Ziedins, The University of Auckland, Department of Statistics, Private Bag 92019, Auckland, 1, New Zealand, iziedins@auckland.ac.nz

1 - Enhancing Optimization-based Tools to Support Long-term Care Planning: Combining Stochastic Models with Scenario Reduction Approaches
Teresa Cardoso-Grilo, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal, teresa.sofia.grilo@iscte.pt

Improving long-term care (LTC) delivery is in the political agenda of European countries with a National Health Service structure. An adequate planning of such networks implies accounting for multiple policy objectives, such as equity, health and wellbeing benefits, and costs, as well as anticipating the impact of key uncertainties. This study proposes a stochastic multi-objective mathematical programming model to support the planning of LTC networks (in terms of services’ location and capacity planning), which is informed by alternative scenario reduction techniques. A Portuguese case study is explored showing the scope for exploring novel approaches for scenario reduction.
2 - An Effective Adding Capacity Policy in Outpatient Capacity Allocation
Bowen Jiang, Northeastern University, Dalian, China, ddxx100@sina.cn, Jiafu Tang, Chongjun Yan
Adding capacity policy allows using additional capacity if all regular capacity is reserved for both routine patients and same-day patients. Uncertainties of patient demand and no-show are considered when formulating doctor overload, which causes weighted cost by additional capacity. Numbers of additional capacity (NA) and regular capacity allocated to routine patient (NR) are two decision variables towards the maximum expected profit. We prove that the expected profit is a unimodal function of the additional capacity when its number exceeds a threshold. Numerical experiments show that NR is more stable to the change of no-show probability under the adding capacity policy.

3 - Threshold Policy for Operational Difficulties in Reverse Referral Partnerships
De Teng, Shanghai Jiao Tong University, Shanghai, China, tengde1439163.com, Na LI, Nan Kong
Reverse referral, implemented to alleviate the imbalanced utilization of medical resource in Chinese hierarchical healthcare system, is facing some operational difficulties caused by profit-driven features of hospitals. To deal with these difficulties, we propose a self-optimized threshold control policy, which is applied in three scenarios in a Two-level Cooperative Hospitals System of reverse referral partnerships. Optimization based on queueing performance measures and iterative simulation are used to derive the optimal control policies.

4 - Strategic Bidding in a Discrete Accumulating Priority Queue
Ilze Ziedins, The University of Auckland, Department of Statistics, Private Bag 92019, Auckland, New Zealand, iziedins@auckland.ac.nz, Raneetha Abyewickrama, Moshe Haviv
We consider a single server M/G/1 queue in which customers accumulate priority linearly while waiting. The rate at which a customer accumulates priority depends on the priority class they have entered. Upon arrival, each customer pays to enter one of the finite number of priority classes, without knowing the state of the queue. Accumulating priority queues have been proposed for healthcare settings, since they permit a patients priority to increase with time spent in the queue. We obtain the Nash equilibrium for this system.

■ TA02
Arcadis Zaal, First Floor
Emergency Medical Services I
Contributed Session
Chair: Henrik Andersson, Norwegian University of Science & Technology, Gloshaugen, Alfred Getz vei 3, Trondheim, 7491, Norway, henrik.andersson@iot.ntnu.no
1 - The New Bi-objective Mathematical Model for Locating Emergency Medical Service
Ehsan Rashidzadeh, PhD Student of Industrial Engineering, Islamic Azad University, Science and Research Branch, Daneshghah Blvd, Simon Bullivar Blvd, Tehran, Iran, Islamic Republic of, ehsan_rashidzadeh67@yahoo.com, Hedyeh Tahmourosi, Reza Fatollahi
Emergency Medical Service is the first step to survive people who need medical services. The location of EMS plays substantial role to decrease the response time and saving people’s live. Establishing cost of EMS and increasing number of served patients, are two conflict objectives. In this work, we use location problem to present a bi-objective mathematical programming model and solving it in order to maximize expected survival probability of patients and minimize establishing costs of EMS stations.

2 - Using the “Floating Patients” Method to Balance Crowding between the Hospital Emergency Department and Other Departments
Guy Wachtel, Bar-Ilan University, Ramat Gan, Israel, Guy.Wachtel@biu.ac.il, Amir Elalouf
We propose a model and scheduling algorithmic approach to reduce crowding in emergency departments (EDs) and ameliorate patient services. The method is a Floating Patients (FP) one: ED triage send some patients to hospitalization departments instead of performing full tests in the ED, thus balancing crowding between departments. An efficient Fully Polynomial Time Approximation Scheme (FPTAS) gives fair results. We present first notes from its application in a real ED.

3 - Strategic Ambulance Location for Heterogeneous Regions
Henrik Andersson, Norwegian University of Science and Technology, Gloshaugen, Alfred Getz vei 3, Trondheim, 7491, Norway, henrik.andersson@iot.ntnu.no
To achieve high quality Emergency Medical Services, planning is of vital importance. An important strategic/tactical problem is to locate ambulance stations and allocate ambulances to these stations. We present a new model for this problem suitable for regions with heterogeneous demand and multiple performance measures. The model locates/allocates stations/ambulances, calculates the service/arrival rates for each station and the probabilities that a call is served by a given station. The model is tested on a combined urban and rural area in Norway with multiple performance measures. Compared with the current solution, the model gives better performance on each performance measures used.

■ TA03
Zeelenberg Zaal, Second Floor
Data-driven Policies for Differentiated Care
Invited: Public Health and Policy Making
Invited Session
Chair: Diana Maria Negoescu, University of Minnesota, Minneapolis, MN, 55455, United States, negoescu@umn.edu
1 - Family-customized Nutritious and Low-cost Dietary Planning Support
Anil Aswani, UC Berkeley, 8 10th St. Apt. 1704, San Francisco, CA, 94103, United States, aaswani@berkeley.edu, Melanie Manguin, Pedro Ivo Bastos Esperanhol, Matt Ollat
Poor nutrition leads to increases in chronic and acute diseases. New approaches to encourage families to eat healthier diets could improve population health and reduce health care spending. This talk describes a novel optimization model for dietary planning that includes temporal constraints to model the time required to prepare foods. We construct an approximation algorithm to efficiently solve this optimization model, and then we describe a data-driven learning approach that tunes the optimization model parameters to customize the dietary plans. We conclude with brief summary of a mobile application we have implemented these approaches into a mobile tool for dietary planning.

2 - Reducing Readmissions through Inpatient Outpatient Joint Control
Xiang Liu, University of Michigan, 322 Village Green Boulevard, Apt 204, Ann Arbor, MI, 48105, United States, liuxiang@umich.edu, Mariel Lavieri, Jonathan Helm, Ted Skolarus
Hospital readmissions affect hundreds of thousands of patients, placing a tremendous burden on the healthcare system. We develop a two-stage stochastic dynamic programming framework that spans the inpatient stay and the post-discharge outpatient monitoring to reduce readmissions. By reducing readmission risk in the 1st stage, and monitoring the patient’s condition in the 2nd stage, our model goal is to jointly guide discharge and post-discharge decisions. This could lead to reduced readmissions.

3 - Modeling And Optimization of HIV Viral Load Monitoring Policies in Resource-limited Settings
Diana Maria Negoescu, University of Minnesota, 111 Church Street SE, Minneapolis, MN, 55455, United States, negoescu@umn.edu, Zhenhuan Zhang, Heiner C. Bucher, Eran Bendavid
Viral load (VL) testing is the most critical monitoring tool for assessing the effectiveness of treatment in HIV patients. The optimal frequency of VL monitoring remains unknown, despite it being the costliest routine monitoring tool for HIV in Sub-Saharan Africa. We formulate a model parameterized using person-level longitudinal data to simulate adherence behavior and disease dynamics over time, and to develop monitoring schedules that adapt to patient characteristics. We then evaluate the total costs and quality-adjusted life years achieved by monitoring VL at fixed intervals (status quo), as well as at variable intervals based on an individualized risk assessment of virologic failure.

4 - Designing Response-adaptive Methods for Multi-arm Clinical Trials using Decision Theory and the Gittins Index
Soﬁa S. Villar, MRC Biostatistics Unit University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom, soﬁa.villar@mrc-bsu.cam.ac.uk
Adaptive designs that use accrued data to improve clinical trials have attracted much attention both from methodologists and practitioners. The multi-armed bandit problem is a decision-theoretic framework from which patient allocation rules can be derived to formulate a Bayesian adaptive design. I will present recent results that illustrate why the implementation of this approach in practice could be desirable and in which circumstances. I will describe recent modifications to the original Gittins index solution method that aim at overcoming specific practical limitations to its use and I will discuss the remaining methodological challenges that need to be addressed.
1 - Clustering of Survival Data using Non-Coxian Phase Type Distributions
Hannah Johns, RMIT University, Melbourne VIC, Australia, hjohns@gmail.com, John Hearne, Leonid Churilov

Modelling of survival data such as length of stay and time-to-completion is a critical component in analyzing health care processes. Such modelling with Coxian phase type distributions allows for survival data to be clustered according to the journey taken through the process. Using stroke rehabilitation data, we present a generalization of this clustering method to other phase-type structures, reducing number of parameters fitted and providing clusters where Coxian phase type clustering fails.

2 - A Data Warehouse of Health Services Administration Related Databases
Sue Feldman, University of Alabama at Birmingham, 1720 2nd Avenue South, SHPB 590K, Birmingham, AL, 35294, United States, sf8588@gmail.com, Bunyamin Ozaydin, Perhat Zengul, Nurettin Oner

Healthcare researchers (HSR) spend unnecessary time performing aggregation of raw data from multiple data sources. Often, each researcher duplicates this effort for each project, facing the same challenges and pitfalls previously experienced. We describe the process by which to create a data warehouse that includes the most frequently used HSR databases. The design includes the capacity for subsequent updates of the existing databases and the addition of new databases. We discuss system structures and integrations of data dictionaries provided by the data sources, which allow creation of dimensions and measures for a business intelligence system, as well data analytics tools.

3 - Accelerating the Adoption of Bundled Payment Reimbursement Systems – a Data Driven Approach Utilizing Claims Data
Wenchang Zhang, University of Maryland, College Park, MD, 20742, United States, wzhang@rhsmith.umd.edu, Margret Bjarnadottir, Ruben Proano, David Anderson, Renata Alexandra Konrad

The CMS launched the Bundled Payments for Care Improvement in 2013 aiming for large-scale adoptions. One of the challenges of implementing the bundled payment system is to identify procedural homogenous groups within an episode of care, to which a flat reimbursement rate can be applied. In this study, we propose a clustering approach to automatically detect and visually represent homogeneous sub-groups of services for a given condition. We apply the approach to cohorts of total knee replacement and congestive heart failure separately. The automatically extracted service clusters with different cost patterns highlight provider’s financial risk under bundled payments.

2 - Approximation Methods for Markov Decision Processes with Application to Clinical Trial Design
Vishal Alhuja, Southern Methodist University, Cox School of Business, P.O. Box 750333, Dallas, TX, 75275, United States, vahuja@smu.edu, John R Birge

Multi-armed bandit problems, typically modeled as Markov decision processes (MDPs), exemplify the exploration vs. exploitation tradeoff. For many practical problems of interest, the state space is intractably large, rendering exact approaches to solving MDPs impractical. We propose a novel approximation approach that combines the strengths of multiple methods - grid-based state discretization, methods to improve approximation accuracy, and simulation, to obtain near-optimal policies for large scale MDPs with minimal added computational burden. Our numerical analysis shows our design to be almost as good as a fully optimal design and superior to existing heuristics.

3 - Flexible FDA Approval Policies
Taylor Corcoran, UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA, 90024, United States, taylor.corcoran.1@anderson.ucla.edu, Elisa Frances Long, Fernanda Bravo

Current U.S. FDA approval standards require pharmaceutical companies to demonstrate drug efficacy at a 0.05 significance level using clinical trial outcomes. This policy ignores heterogeneity in disease characteristics, such as the severity and prevalence, the level of research and development taking place, and the number of alternative drug treatments available for patients. We develop a queueing framework to analyze the drug approval process that incorporates such factors. We derive optimal approval policies and conduct a numerical study for three diseases (HIV, hypertension, and breast cancer).

4 - Designed Sampling from Large Databases for Controlled Trials
Sanjay Mehrotra, Northwestern University, Dept of I E / M S C246 Tech Inst, 2145 Sheridan Road, Evanston, IL, 60208-3119, United States, mehrotra@eims.northwestern.edu, Daniel Apley, Liwen Ouyang

We will present a methodology for clinical trial design that uses multi-attribute information from a clinical database, with the goal of extracting more information from the trial than what might be possible using a traditional randomized control trial design. The methodology is tested using simulated data generated from a real-setting motivation. We find that the standard error is significantly lower for the same cohort size, or a much smaller cohort can be constructed for a given standard error on the covariates.

3 - Approximation Methods for Markov Decision Processes with Application to Clinical Trial Design
Vishal Alhuja, Southern Methodist University, Cox School of Business, P.O. Box 750333, Dallas, TX, 75275, United States, vahuja@smu.edu, John R Birge

Multi-armed bandit problems, typically modeled as Markov decision processes (MDPs), exemplify the exploration vs. exploitation tradeoff. For many practical problems of interest, the state space is intractably large, rendering exact approaches to solving MDPs impractical. We propose a novel approximation approach that combines the strengths of multiple methods - grid-based state discretization, methods to improve approximation accuracy, and simulation, to obtain near-optimal policies for large scale MDPs with minimal added computational burden. Our numerical analysis shows our design to be almost as good as a fully optimal design and superior to existing heuristics.

3 - Flexible FDA Approval Policies
Taylor Corcoran, UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA, 90024, United States, taylor.corcoran.1@anderson.ucla.edu, Elisa Frances Long, Fernanda Bravo

Current U.S. FDA approval standards require pharmaceutical companies to demonstrate drug efficacy at a 0.05 significance level using clinical trial outcomes. This policy ignores heterogeneity in disease characteristics, such as the severity and prevalence, the level of research and development taking place, and the number of alternative drug treatments available for patients. We develop a queueing framework to analyze the drug approval process that incorporates such factors. We derive optimal approval policies and conduct a numerical study for three diseases (HIV, hypertension, and breast cancer).

4 - Designed Sampling from Large Databases for Controlled Trials
Sanjay Mehrotra, Northwestern University, Dept of I E / M S C246 Tech Inst, 2145 Sheridan Road, Evanston, IL, 60208-3119, United States, mehrotra@eims.northwestern.edu, Daniel Apley, Liwen Ouyang

We will present a methodology for clinical trial design that uses multi-attribute information from a clinical database, with the goal of extracting more information from the trial than what might be possible using a traditional randomized control trial design. The methodology is tested using simulated data generated from a real-setting motivation. We find that the standard error is significantly lower for the same cohort size, or a much smaller cohort can be constructed for a given standard error on the covariates.

3 - Approximation Methods for Markov Decision Processes with Application to Clinical Trial Design
Vishal Alhuja, Southern Methodist University, Cox School of Business, P.O. Box 750333, Dallas, TX, 75275, United States, vahuja@smu.edu, John R Birge

Multi-armed bandit problems, typically modeled as Markov decision processes (MDPs), exemplify the exploration vs. exploitation tradeoff. For many practical problems of interest, the state space is intractably large, rendering exact approaches to solving MDPs impractical. We propose a novel approximation approach that combines the strengths of multiple methods - grid-based state discretization, methods to improve approximation accuracy, and simulation, to obtain near-optimal policies for large scale MDPs with minimal added computational burden. Our numerical analysis shows our design to be almost as good as a fully optimal design and superior to existing heuristics.

3 - Flexible FDA Approval Policies
Taylor Corcoran, UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA, 90024, United States, taylor.corcoran.1@anderson.ucla.edu, Elisa Frances Long, Fernanda Bravo

Current U.S. FDA approval standards require pharmaceutical companies to demonstrate drug efficacy at a 0.05 significance level using clinical trial outcomes. This policy ignores heterogeneity in disease characteristics, such as the severity and prevalence, the level of research and development taking place, and the number of alternative drug treatments available for patients. We develop a queueing framework to analyze the drug approval process that incorporates such factors. We derive optimal approval policies and conduct a numerical study for three diseases (HIV, hypertension, and breast cancer).

4 - Designed Sampling from Large Databases for Controlled Trials
Sanjay Mehrotra, Northwestern University, Dept of I E / M S C246 Tech Inst, 2145 Sheridan Road, Evanston, IL, 60208-3119, United States, mehrotra@eims.northwestern.edu, Daniel Apley, Liwen Ouyang

We will present a methodology for clinical trial design that uses multi-attribute information from a clinical database, with the goal of extracting more information from the trial than what might be possible using a traditional randomized control trial design. The methodology is tested using simulated data generated from a real-setting motivation. We find that the standard error is significantly lower for the same cohort size, or a much smaller cohort can be constructed for a given standard error on the covariates.
3 - Hepatitis B Control in China: Models to Support Policy Change
Margaret L. Brandeau, Stanford University, Management Science and Engineering, 473 Via Ortega, Stanford, CA, 94305-4026, United States, brandeau@stanford.edu

In low-and middle-income countries, mathematical models can be particularly useful for identifying cost-effective public health interventions and supporting policymakers in informed decision making. We describe our model-based analyses of potential hepatitis B vaccination policies in China. Our work helped encourage policymakers in China to enact legislation to provide free catch-up vaccination for hundreds of millions of children - an important step in eliminating health disparities, reducing discrimination, and ensuring that millions of people can now be protected from hepatitis B.

4 - Optimal Control of an Infectious Disease with Drug Resistance
Lauren Cipriano, Ivey Business School, 1255 Western Road, Room 2361, London, ON, N6G 0N1, Canada, lcipriano@ivey.uwo.ca, Naveed Chhrzra, Eva Emms

We study the optimal treatment policy for an SIS-type infectious disease with drug resistance. We prove that the optimal policy is bang-bang with a single switching time and we find that the value function is not Lipschitz continuous. Using numerical analysis, we demonstrate that the optimal policy changes form when the disease transmission rate is a function of disease prevalence (e.g. as a result of social distancing). Our solution approach can be generalized to other control problems.

■ TA07
Willem Burger Zaal
Analyzing & Optimizing the Patient Path to Care
Sponsored: Health Applications
Sponsored Session
Chair: Bob Batt, University of Wisconsin-Madison, 975 University Ave., Madison, WI, 53706, United States, bob.batt@wisc.edu

1 - Proactive Customer Service: Operations and Economics
Tolga Tczcan, London Business School, Regent’s Park, London, NW1 4SA, United Kingdom, ttczcan@london.u, Kraig Delana, Nick Savva

We examine proactive service of customers, which is particularly useful in settings where customers are more flexible than service capacity. Our research uses queueing theory (diffusion limit approximations) to quantify the performance improvement and economic theory (simultaneous move game) to identify under what conditions customers would willing to adopt the proactive service. We show that all customers benefit by proactive service even if only a fraction of customers are flexible. Despite the substantial reductions in delays, we find customers tend to adopt proactive service compared to socially optimal due to a positive externality.

2 - An Expected Coverage Model with a Cutoff Priority Queue
Laura Albert, PhD, UW-Madison, Madison, WI, United States, laura@engr.wisc.edu, Soovin Yoon

In emergency medical service systems, the response to urgent emergency calls can be delayed when the system is congested. To address this, we propose a spatial Hypercube approximation model with a cutoff priority queue that estimates performance measures for a system where some servers are reserved exclusively for high priority calls when the system is congested. The spatial Hypercube approximation model evaluates public safety systems that employ a cutoff priority queue. A mixed integer linear programming model uses the Hypercube model to design a system in a cutoff priority queue paradigm.

3 - Evaluating Hospital Readmission Decisions
Gabriel Zayas-Caban, 1731 Broadway Lane, Apartment 402, Ann Arbor, MI, 48105, United States, gazayas@umich.edu, Amy Cochran, Keith Kocher

The Hospital Readmissions Reduction Program penalizes hospitals with excess readmissions. Re-evaluating admissions decisions, providers have considered delays or increases in decisions. To understand the impact of these changes on patient outcomes, we analyzed over 150,000 encounters in the Emergency Department from the University of Michigan from 2012 through 2015. A Hidden Markov model is fit to the data to capture the interplay between confounding latent variables (e.g. patient severity) and admission decision process. This allowed us to gain insight into how decisions are made and how changes in decisions impact patient outcomes.

4 - Distance, Quality, or Relationship? Interhospital Transfer of Heart Attack Patients
Lauren Xiaoyu Lu, University of North Carolina at Chapel Hill, Kenan-Flagler Business School, CB #3490, McColl Building, Chapel Hill, NC, 27599, United States, lauren.lu@unc.edu, Susan F Lu

We empirically investigate the pattern of where heart attack patients are transferred between hospitals. Using 2011 Florida Emergency Department and Inpatient Databases, we demonstrate the relative importance of three key factors in determining transfer destinations: (1) the distance between sending and receiving hospitals, (2) publicly-reported quality measures of receiving hospitals, and (3) the relationship between sending and receiving hospitals as indicated by whether they are affiliated with the same multihospital system.

■ TA08
Ruys Zaal, Fourth Floor
Operating Room Scheduling I
Invited: Health Operations Management
Invited Session
Chair: Willem van Jaarsveld, Technische Universiteit Eindhoven, Rotterdam, NL, 3000DR, Netherlands, W.L.v.Jaarsveld@tue.nl, Co-Chair: Guanlian Xiao, Technische Universiteit Eindhoven, Eindhoven, 5653BA, Netherlands, gxguan@gmail.com

1 - A Reservation Policy for Medical Diagnostic Resource Allocation
Weifen Zhuang, School of Management, Xiamen University, China, School of Management, Xiamen University, Xiamen, 361005, China, wzhuang@xmu.edu.cn

Medical diagnostic facilities such as CT or MRI, the critical part of a comprehensive health care system, play an important role in the proper diagnosis and timely treatment of diseases. Hospital managers are under great pressure to manage such facilities e ciently and e ctitively. This problem is much critical in China, especially in the large tertiary hospitals. In this paper, we study the problem of resource allocation for medical diagnostic facilities, accessed by three types of patients. Both inpatients and outpatients have to make an appointment in advance and emergency patients walk in directly. We formulate the dynamic programming model of the resource allocation problem and study the structural properties, based on which we fully characterize the optimal reservation policy. An upper-bound to the DP value is obtained from a standard “hedg-sight” optimal argument, and it is asymptotically optimal. A lower-bound to the DP is created through three independent newvendor problems constrained by the capacity. The gap between the upper-bound and lower-bound is explicitly quantitated and is of order square-root-of-T. Numerical studies show that the performance of bounds works very well. The practice and data of West China Hospital are used for analysis and implementation. We propose and compare three heuristic policies analytically. Numerical study illustrates that our heuristic policy outperforms the hospital’s target policy significantly.

2 - Overbooking or Pre-charge: A Comparison of the Strategies for Healthcare Appointment with No-show
Guohua Wan, Shanghai Jiao Tong University, Shanghai, China, ghwan@sjtu.edu.cn, Yan Zhan

Patient no-shows of scheduled appointments is a serious problem for healthcare service providers. To mitigate this negative effect, the pre-charge strategy, which charges a deposit when a patient makes an appointment, is increasingly used by appointment systems. With the pre-charge strategy, the deposit may or may not be refunded. In practices, if the refunding policy is adopted, then the deposit may or may not be refunded. In practices, if the refunding policy is adopted, then the deposit is not refunded and then the payment is not refunded. In practices, if the refunding policy is adopted, then the deposit is not refunded if the cancellation is informed. We study the performance of both the pre-charge strategy and the widely used overbooking strategy and show that the pre-charge strategy with full refund significantly outperforms the overbooking strategy in terms of service providers’ net profits. We also derive the condition under which the refund policy outperforms the no-refund counterpart, demonstrating the value of no-show information. Furthermore, we model dynamic appointment scheduling as a Markov decision problem, conduct computational numerical experiments based on parameters driven from a hospital, and obtain a few managerial insights for dynamic appointment scheduling.

3 - Optimizing Ending Time of Colorectal Cancer Screening for High-risk Patient
Jing Li, Jiaotong University, Wuxi, China, lijing79786518@163.com, Pu Xiaojin

As the third leading death cause in US, colorectal cancer(CRC) has raised much attention. Age-dependent recommendations of screening are provided currently. We build a markov decision process to study the optimal final age of CRC screening for high-risk patients, taking patients’ status into account. We derive a threshold policy for the screening age which depends on patients’ health status. Numerical result show that our policy can improve the overall QALYs and provide robust policy to all patients.
4 - Stochastic Programming Analysis and Solutions to Schedule Overcrowded Operating Rooms In China
Willem van Jaarsveld, Assistant Professor, Erasmus University-Rotterdam, PO Box 1738, Room H11-10, Rotterdam, NL-3000DR, Netherlands, W.L.Jaarsveld@tue.nl

As a result of the growing demand for health services, China’s large city hospitals have become markedly overstretched, resulting in delicate and complex operating room scheduling problems. While the operating rooms are struggling to meet demand, they face idle times because of (human) resources being pulled away for other urgent demands, and cancellations for economic and health reasons. In this research we analyze the resulting stochastic operating room scheduling problems, and the improvements attainable by scheduled cancellations to accommodate the large demand while avoiding the negative consequences of excessive overtime work. We present a three-stage recourse model which formalizes the scheduled cancellations and is anticipative to further uncertainty. We develop a solution method for this three-stage model which relies on the sample average approximation and the L-shaped method. The method exploits the structure of optimal solutions to speed up the optimization. Scheduled cancellations can significantly and substantially improve the operating room schedule when the costs of cancellations are close to the costs of overtime work. Moreover, the proposed methods illustrate how the adverse impact of cancellations (by patients) for economic and health reasons can be largely controlled. The (human) resource unavailability however is shown to cause a more than proportional loss of solution value for the surgery scheduling problems occurring in China’s large city hospitals, even when applying the proposed solution techniques, and requires different management measures.

■ TA09

Van Rijckevorsel Zaal, Fourth Floor
Scheduling and Planning V
Contributed Session
Chair: Alexander Tesch, Zuse Institute Berlin, Takustraße 7, Berlin, 14195, Germany, tesch@zib.de

1 - Scheduling of Operating Theatres using Simulation-based Decision Process Modeling
Anders Reenberg Andersen, Technical University of Denmark, Anker Engelunds Vej 1, Kg s. Lyngby, 2800, Denmark, arean@dtu.dk, Bo Friis Nielsen, Thomas Jacob Riis Stidsen, Line Blander Reinhardt

Scheduling of patients for hospital operating theatres is a well-known problem in the literature, and yet it appears in many different variations. In this study, our objective is to minimize the long term costs associated with a scheduling of patients to days and rooms within a rolling planning horizon. We model this problem by using a simulation-based Markov decision process. Numerical experiments indicate that this approach is more adaptive to increasing costs than a non-anticipative GRASP heuristic.

2 - Markov Decision Process for Optimizing Bed Reservation Policy in Intensive Care Units
Xuanjing Li, Tsinghua University, Room 519, ShunDe, Beijing, China, lix15@mails.tsinghua.edu.cn

In practice, ICUs administrators reserve some beds or early discharge current patient for those serious patients to avoid dangerous condition. A Markov Decision Process (MDP) model is established to strike balance between rejection of incoming patient and the early discharge in the near future. We propose a reservation policy by analyzing the properties of the optimal function including monotony, concavity and decreasing marginal reward.

3 - LP-based Scheduling Policies for Stochastic Operation Room Scheduling
Alexander Tesch, Zuse Institute Berlin, Takustraße 7, Berlin, 14195, Germany, tesch@zib.de

Efficient operation room scheduling subject to unknown operational times is one of the core problems in healthcare optimization. Recently, LP-based scheduling policies have not only been shown to yield provable approximation guarantees, but also computational studies give rise to applications to real-world problems. Our talk deals with the practical evaluation of LP-based scheduling policies from the background of minimizing the total overtime in the operating rooms. The performance of the presented algorithms is compared to different assignment heuristics according to deterministic lower bounds and simulations based on real data from a major hospital in Berlin.

4 - Using Critical Path Method-material Requirements Planning for Scheduling Surgeries
Ali Ardalan, Professor, Old Dominion University, 4900 Hampton Blvd, Norfolk, VA, 23454, United States, aardalan@odu.edu

Surgery suites are expensive resources and their high utilization helps keeping hospital costs in control. We propose deploying a methodology that is developed by integrating critical path method and material requirements planning to ensure that all of the resources necessary for a surgery (the project) to be available when they are needed and the quantity that are needed. This method distinguishes between resources that are depleted as they are used, such as supplies, and those that will continue to be available after they provide the service, such as doctors and nurses.

■ TA10

Plate Zaal, Fourth Floor
Supply Chains IV
Contributed Session
Chair: Hamideh Anjomshoa, IBM Research Australia, 2/175 Highfield Road, Camberwell, Victoria, 3124, Australia, hamideh.a@au.ibm.com

1 - Hospital Medication Reorder Policy under Demand and Supply Uncertainties
Jiana-Fu Wang, Associate Professor, National Chung Hsing University, 250 Kuo Kuang Road, Marketing Department, Taichung, 40227, Taiwan, jfw@dragon.nchu.edu.tw, Mei-Ting Tsai, Yi-Ching Liu

It had been decades that drug shortage affects daily practice in healthcare institutes inevitably. This study intends to find replenishment policies for a hospital taking uncertainties of demand and supply into account. We develop medicine classification matrix in terms of shortage severity. Medicine demand and supply are modeled stochastically. As a result, dedicated reorder policy is made for each medication category. The proposed framework and empirical examples are expected to support better replenishment decision while considering cost and healthcare quality.

2 - Cost Sharing for Capacity Transfer in Cooperating Queueing Systems
Yinlian Zeng, The Chinese University of Hong Kong, The Chinese University of Hong Kong, Room A605, PGH 5, Shatin, N.T., Hong Kong, elainezeng007@gmail.com, Lianmin Zhang, Xiaoqiang Cai, Jun Li

Hospitals or clinics can often be modeled as queueing systems. In this paper, we consider the capacity transfer problem among cooperating queueing systems (hospitals/clinics). We first design efficient algorithms to solve the capacity transfer problem. Then, we propose cost allocation rules to allocate the total cost among the participants in the framework of cooperative game theory.

3 - Optimal Utilisation Target for Surgery Resources in Hospitals
Hamideh Anjomshoa, IBM Research Australia, 2/175 Highfield Road, Camberwell, Victoria, 3124, Australia, hamideh.a@au.ibm.com

Optimal planning surgeries is critical and complex in a hospital. One of the challenges for decision makers is to set the expected resource utilisation for surgeries, in order to improve the efficiency and flow of patients in hospitals. Over-utilisation and under-utilisation are both not desired. In this talk, we present a Mixed Integer Programming Model with multi-objectives including and the numerical results. We also compare the effect of different decisions on the performance.
1 - Transparent and Portable Markov Modeling for Medical Cost-effectiveness
Gordon B Hazen, Professor Emeritus, Northwestern University, Dept of Industrial Eng & Mgmt Sciences, Technological Institute, Evanston, IL, 60208-3119, United States, ghh305@northwestern.edu, Matthew Pilecki, James Carr, Michael Markl
Markov models are widespread in medical cost-effectiveness. Although model transparency is a recognized goal in publication guidelines, complete model specification is uncommon. StoTree is a new and freely available Excel addin for finite-state continuous-time Markov models that allows separate formulation and linking of model components. This facilitates transparency and allows the re-use of model components in multiple applications. We review properties of StoTree, and illustrate its use in constructing a complex model of heart monitoring following cardiac transplant.

2 - COP: Inducing Organ Discards and Patient Deaths on Transplant Wait Lists
Mohammad Delays, Tepper School of Business, Carnegie Mellon University, 6315 Forbes Avenue, #1105, Pittsburgh, PA, 15217, United States, delasays@cmu.edu, Sridhar Tayur
We investigate transplant waiting list management from the viewpoint of a transplant center in the presence of the conditions of participation (COP). According to the COP, centers with a lower-than-expected one-year post-transplant patient survival rates are at the risk of losing their programs. Using flexible Lyapunov functions, we analyze a queuing model that captures important factors affecting the post-transplant survivals, including different organ qualities and patient health status, and health deterioration on the waiting list. Using patient and transplant-level data, we illustrate that setting the COP expectations without a careful consideration of transplant center-specific conditions could move the COP away from a net-benefit approach in favor of maximizing outcomes only by invoking the transplant centers to cherry-pick the transplant candidate and the offered organs. Our model can guide policy makers to evaluate the effects of the COP and set the appropriate post-transplant outcome expectations.

3 - Comparing Different Forms of the Equity Objective in Redistricting of U.S. Liver Allocation
Sommer Gentry, Professor, US Naval Academy, Mathematics Department, 572-C Holloway Road, Annapolis, MD, 21402, United States, gentry@usna.edu, Olivia McQuade
In the U.S., deceased-donor liver allocation rules greatly disadvantage patients in some geographic areas, but distances are too long to transport every liver to the top patient. We have proposed optimized redistricting to reduce geographic disparity, by minimizing the sum of absolute differences from the number of livers per district in an idealized distribution. We test alternative objective functions including minimizing the maximum difference and minimizing the percent deviation from ideal, and discuss which conform to intuitive notions about fairness to patients.
1 - Machine Learning Approach to Nurse Staffing

Yazan Alsour, University of Illinois at Springfield, One University Plaza, MS UHB 4021, Springfield, IL, 62703, United States, yalns2@uis.edu, Rassule Hadidi, Neetu Singh

The technology advancements in healthcare have transformed the way providers are able to deliver care to patients. HIT and medical apps are the key in this transformation. HIT also plays an essential role in increasing the efficiency of healthcare delivery. Virtual care using telehealth platforms have proven to improve patient care outcomes by providing better accessibility to medical services, health care professionals, and eliminating the need for unnecessary hospitalization. Virtual care follows up have reduced the time between appointments for both providers and patients.

2 - How do EMRs and Integration Lower Healthcare Cost in Developing Countries: Evidence from Health Failure Patients LOS

Yazan Alsour, University of Illinois at Springfield, One University Plaza, MS UHB 4021, Springfield, IL, 62703, United States, yalns2@uis.edu, Rassule Hadidi, Neetu Singh

Healthcare providers in developing countries are trying to catch up with the new health information technology (HIT) advancements and trends. In this paper, we examine the impact of using EMR system on healthcare cost in a developing country in the Middle East. We argue that EMR and integration capabilities help providers reduce hospital length of stay (LOS). Our findings show that EMR systems can reduce unnecessary hospital length of stay (LOS) which subsequently reduces cost and the risk of hospital-acquired conditions (HACs) while maintaining quality.

3 - Exploring the Impact of Security on User Evaluation of Mobile Health Applications

Yazan Alsour, Al-Bayt University, P.O. BOX 130040, Mafraq, 25113, Jordan, mohammad.alsharo@aubu.edu.jo

The wide spread of mobile technology motivated healthcare providers to embrace mobile health technology (mHealth). Although enabling users to utilize mobile devices to communicate with providers and access services offers numerous benefits, many risks regarding security and privacy arise. This research investigates how security and privacy measures impact the evaluation of mHealth apps. A datasets of 3,000 health apps were collected to conduct an empirical analysis. We find that high measures of security and privacy positively impact the ratings of the health app.

Thursday, 10:30am - 12:00pm

1 - Modelling Emergency Departments using Discrete Event Simulation with a New Approach for Quantifying Busyness

Ying Xu, Assistant Professor, Singapore University of Technology and Design, 8 Somapah Road, Engineering System & Design, Singapore, 487372, Singapore, xu_ying@sutd.edu.sg, Shruti Sharmar, Manu Gupta

We investigate the crowding problem in hospitals’ emergency departments (EDs) from the perspective of demand management. We propose a novel congestion game model that provides the first systematic methodology to simultaneously analyze the effects of ED resource allocation as well as patients’ perception and self-interests when they can choose between ED and primary care. We perform extensive numerical experiments to study the impact of perception errors and patients’ self-interests on ED demand and resulting crowding, and compare them with optimum centralized patient flows.

3 - Simulating and Visualizing Emergency Departments for Improved Waiting Times and Patients’ Decision Making Process

Gabriela Noemi Gongora Swartzman, PhD Student, Stevens Institute Of Technology, 1 Castle Point On Hudson, Hoboken, NJ, 07030, United States, gongora@stevens.edu, Jose Emmanuel Ramirez-Marquez

Long waiting times in the Emergency Departments (ED) across the U.S. has been identified as a major concern by the American College of Emergency Physicians. This issue causes patient dissatisfaction, patients leaving and physicians receiving negative referrals. This work identifies bottlenecks in the ED processes, tests scenarios and provides decision making suggestions to ED’s policies through an Agent-based Simulation. The findings of the simulation were used to develop a visualization tool to aid both physicians and patients through the decision making process at the ED. Subsequently patients can have options about their stay and their treatment.
Panel Session – Operations Management: Current Practice and its Implications for Policy

Edward G. Anderson, University of Texas McCombs School of Business, Austin, TX, 78712, United States, edward.anderson@mccombs.utexas.edu

To a great extent, the greatest discussion on how to improve healthcare systems centers on policy issues, particularly in the United States. That said, there are tremendous sub-policy challenges in all nations with respect to Healthcare Operations and Systems Engineering. The experts on the panel will discuss the latest work that they and other colleagues are working on in Healthcare Operations Management/Systems Engineering. They will then discuss what future trends in this research should be undertaken. Finally, they will treat the implications of this research for policy.

Panelist
Craig Froehle, University of Cincinnati, 2925 Campus Green Drive, Cincinnati, OH, 45221-0130, United States, craig.froehle@uc.edu

Robert Batt, Wisconsin School of Business, UW-Madison, 5279 Grainger Hall, 975 University Ave., Madison, WI, 53706, United States, bob.batt@wisc.edu

Edward G Anderson, University of Texas-Austin, IROM Department, 2110 Speedway Avenue, Austin, TX, 78712, United States, ed@edanderson.org
Maximizing Health under Constraints in Developing Countries
Invited: Disparities in Health, Low and Middle Income Settings, Global Health
Invited Session
Chair: Julie Simmons Ivy, North Carolina State University, Raleigh, NC, 27695-7229, United States, fry pays@ncsu.edu

1 - Modeling Impact of Interventions on Mother to Child Transmission of HIV
Elizabeth McCarthy, Clinton Health Access Initiative, P.O. Box 51071 Ridgeway, Lusaka, Zambia, emccarthy@clintonhealthaccess.org, Jessica Joseph

Antiretroviral therapy during pregnancy and breastfeeding has proven so effective that virtual elimination of mother-to-child transmission (MTCT) of HIV has become an attainable goal. Yet health systems constraints in many resource-limited countries remain a barrier. We developed a computer-based state-transition model using Markov cohort simulation to estimate MTCT. The model, a tool for decision-makers, compares the impact on MTCT of different programmatic interventions to retain women and infants in care, and improve basic health services such as strengthening maternal and infant testing, improving adherence to visit schedules, and preventing stock-outs of essential commodities.

2 - Technology use Findings Informing Resource-poor Environments and their Healthcare Needs
Fay Payton, Professor, North Carolina State University, COM, Box 7229, Raleigh, NC, 27695, United States, fay_payton@ncsu.edu

In a prior study, we used a technology adoption model to assess the use of telemedicine among Ethiopian physicians. While the model explained acceptance behavior of physicians in a resource constrained environment, it also explained twenty-eight percent of the variance in the intention to adopt the technology and fifty-eight percent in perceived ease of use. This research presentation challenges the field to examine what are the critical disease conditions that can be modeled to address critical disease conditions in these environments.

3 - A Simulation Study on the Decongestion of Urban HIV Clinics in Zambia
Kathryn Smith, NCSU, Raleigh, NC, United States, knsmith@ncsu.edu, Karen T Hicklin, Elizabeth McCarthy, Julie Simmons Ivy

Congestion and long patient wait times affect HIV clinics in developing countries. In order to attempt to reduce congestion and wait times, interventions to increase the number of stable patients receiving three month drug supplies and reduce drug stockouts were implemented and tested at several clinics in Zambia for a three month period. To analyze the effects of these, and other possible interventions, a discrete event simulation (DES) model of a generic HIV clinic was created.

Policy/Incentive Issues in Healthcare Operations
Invited: Public Health and Policy Making
Invited Session
Chair: Tinglong Dai, Johns Hopkins University, Johns Hopkins University, Baltimore, MD, 21202, United States, dai@jhu.edu

1 - Rational Inattention under Offer Batching
Tinglong Dai, Johns Hopkins University, 100 International Dr, Baltimore, MD, 21202, United States, dai@jhu.edu, Ronghuo Zheng

In this study, motivated by an organ procurement organization’s offer-placement process, we model a two-sided matching problem in which costly investment effort is required to acquire reliable quality information. We discuss a broad class of applications of our modeling framework, and provide both structural properties and computational insights.

2 - Machine Learning for Planning Capacity and Demand in Primary Care Mental Health Services
Laura Andrews, Cardiff University, Cardiff, United Kingdom, andrewslw@cardiff.ac.uk, Daniel Gartner

Anemun Bwana Health board is one of the largest healthcare organizations in the United Kingdom. Mental health services within the organization are faced with large demand. In this study, we use a sequential pattern mining algorithm to predict patients’ clinical pathways and follow-up patterns. In a second stage, performance metrics are traded off using discrete-event simulation.

3 - Implementing An Agent-based Framework to Evaluate Competition in Private Healthcare Markets
Abdullah Alibrahim, University of Southern California, 612 S Flower St, Apt 708, Los Angeles, CA, 90017, United States, alibrahim@usc.edu, Shinya Wu

Initiatives to improve healthcare quality and affordability have seemingly counteracting effects. Market share shifts due to coordinated healthcare provision might negate the effects of concentrating purchasing for care and coverage. An agent-based simulation model is built based on a theoretical framework that captures consumer, provider, and insurer decisions in private healthcare market. The structural, behavioral, and interrelated relationships are operationalized and results are validated in comparison to applicable empirical econometric relationships.

Policy/Incentive Issues in Healthcare Operations
Invited: Health Operations Management
Invited Session
Chair: Nan Kong, Purdue University, Purdue University, West Lafayette, IN, 47906-2032, United States, nkong@purdue.edu

1 - Reconfiguring Accident and Emergency Healthcare Facilities
Houyuan Jiang, University of Cambridge, Judge Business School, Trumpington Street, Cambridge, CB2 1AG, United Kingdom, h.jiang@lbs.cam.ac.uk, ManMohand Sodhi

Motivated by the cost and service pressures in England, the Keogh report of 2013 presented some principles for reconfiguring the emergency department (ED) system, while calling for models and tools to evaluate such reconfiguration. We present an approach to understand cost implications and to identify opportunities for reconfiguration of ED facilities nationwide. Using stylized models, we identify conditions for separating specialty from general ED to reduce costs without sacrificing service requirements. We identify conditions which support a merger of two EDs. Our work can help the implementation of the Keogh recommendations related to elderly services or urgent clinics for minor injuries.

2 - Optimizing Patient-centered Care Interventions to Reduce Readmissions
Jingshan Li, Professor, University of Wisconsin-Madison, Madison, WI, 53706, United States, jingshan.li@wisc.edu, Hyokyoung Lee, Sujee Lee, Philip A Bain

Hospitals have devoted substantial efforts to reducing readmissions. In this talk, first, the predictive models are used to identify the most critical factors that affect readmission and predict each patient’s readmission risk. Then, process intervention models are introduced to evaluate the potential readmission probabilities. Finally, patient-centered optimization models are used to find the most cost effective intervention policies so that the readmission rate can be minimized. Two case studies are introduced: patients with chronic obstructive pulmonary disease (COPD) and total joint replacement (TJR) surgeries.

3 - Next Day Stochastic Operating Room Scheduling with Limited Historical Data
Enis Kayis, Assistant Professor, Ozyegin University, Niantepe Mah. Orman Sok.No:34-36, Alennda – Çekmeköy, Istanbul, 34794, Turkey, enis.kayis@ozyegin.edu.tr, Omer H Sevinik

Effective operating room (OR) scheduling when surgery durations are uncertain requires accurate surgery duration estimates. True surgery duration distributions are not known in practice and hence estimates are used as a proxy. Unfortunately, these estimates are developed using limited past data. In this paper, we quantify and analyze the effect of limited past data on generating OR schedules and discuss the efficiency of several estimation methods one can employ to increase the quality of OR schedules. We find that the number of data points may not be practically available in most settings to generate near-optimal schedules.

4 - Improving Access of Low Back Pain Patients through Prioritization at a Neurosurgery Clinic
Esma S. Gel, Arizona State University, School of Computing, Informatics and, Decision Systems Engineering, Tempe, AZ, 85287-8809, United States, esma.gel@asu.edu, Derya Kilinc, Bernard Bendok

Low back pain (LBP) is often cited to cause significant health impairments for a large fraction of the population. Studies point to the unnecessary use of costly imaging studies and surgical assessment. This mismatch results in critical access problems for patients that truly need surgical interventions within a reasonable timeframe. We present findings from a year-long project to improve access of LBP patients at a neurological surgery clinic. Our analysis points to the importance of prioritizing surgical patients and demonstrates the potential improvements in patient access.
1 - Optimizing Operations in a Surgical Theater
Flavio S Fogliatto, Professor, Federal Univ of Rio Grande do Sul, Av. Oswaldo Aranha, 99/50 andar, Porto Alegre, RS, 90040020, Brazil, fogliatto@producuo.ufrgs.br, Miguel J. Anzanello

Performing surgeries is a central activity in most hospitals, calling for proper management of operations in the surgical theater. One key element is the scheduling of procedures: if properly conducted it maximizes the number of surgeries assigned to surgical rooms and smooths the demand for resources, before and after procedures take place. Here we discuss the planning of activities in surgical theaters at a low aggregation level. We present a proposition to handle the scheduling problem, and test it in a surgery theater comprised of 11 rooms, assignable to 15 surgical specialties.

2 - Using Buffer Capacity in Operating Room Planning
Carla Van Riet, KU Leuven, Naamsestraat 69, Leuven, 3000, Belgium, carla.vanriet@kuleuven.be, Erik Demeulemeester

A surgical schedule can rarely be executed as planned, leading to undesired cancellations of surgeries and staff overtime. One way to avoid this is to use buffers in the schedule. Unfortunately, this reduces the amount of capacity available for planning elective patients. In this talk, we show whether and in which cases it is reasonable to install capacity buffers, which type of buffer results in the best performance and how buffers influence the master surgery schedule. We are collaborating with a large university hospital in Belgium.

3 - Operating Theater Scheduling Optimization
Paolo Tubertini, Assistant Professor, University of Bologna, Viale Risorgimento 2, Bologna, Italy, paolo.tubertini@unibo.it, Valentina Cacchiani

Waiting list reduction for elective surgery is a strategic goal for Emilia-Romagna Regional administration. In recent years the management of surgical activities is moving towards resources integration, emphasizing the need of decision support systems for optimizing the utilization of Operating Theaters shared resources such as induction and recovery rooms. We implemented and tested a Mixed-Integer Programming model and a heuristic algorithm for the weekly scheduling of elective activities on real world instances.

4 - Integrated Anesthesiologist and Room Scheduling for Surgeons
Sandep Rath, Assistant Professor, University of North Carolina at Chapel Hill, CB #3490, McColl Building, McColl 4705, Chapel Hill, NC, 27599, United States, sandeep@unc.edu, Kumar Rajaram, Aman Mahajan

We consider the problem of minimizing resource usage and overtime costs across multiple parallel resources such as anesthesiologists and operating rooms. We develop a data driven robust optimization method to solve this problem. We validate and implement this model as a decision support system at the UCLA Ronald Reagan Medical Center. This has increased the average daily resource utilization by over 3.5% and has led to an average daily cost savings of around 7% or estimated to be $2.2m per annum. The insights based on this model have also significantly influenced decision making at the operating services department at this hospital.

Healthcare back matter 2017_Healthcare back matter 7/6/17 5:32 PM Page 41
3 - Relations Between Importance and Zone of Tolerance of Patient Expectation: An Empirical Research of Hospital Service Quality
Wei Hsu, Assistant Professor, National Taipei University of Nursing & Health Sciences, No. 89 Neijang St., Taipei City, 10845, Taiwan, weilhsu@ntuh.edu.tw, Yun-Ting Huang, Wen-Ping Fan

The patient expectation, bounded by upper and lower levels of the Zone of Tolerance (ZOT), plays a critical role in defining what hospital service quality means. However, there is a lack of literature to investigate the relations between importance and ZOT in a nonprofit organization. This study intends to investigate the relations between the importance and ZOT of service quality dimensions and attributes of hospital services, based on the SERVQUAL dimensions and a sample of responses from 304 patients. The results showed that the situation that the importance of narrow level and high ZOT, exists in nonprofit organizations, especially significant on ‘Tangibles’ and ‘Responsiveness.’

4 - Healthcare Needs Maps in Poland – A First Step Toward Evidence Based Management in Healthcare System
Barbara Wiórowska, Ministry of Health, Miodowa 15, Warsaw, 00-952, Poland, dep-as@m.gov.pl
Barbara Wiórowska, Warsaw School of Economics, al. Niepodległości 162, Warsaw, 02-554, Poland, dep-as@m.gov.pl, Beata Kon

Evidence based management was not widely used in recent years in Polish health care system. Even if it was used, it was based on individually collected data (coming from chosen providers/area). Without sufficient information only socially accepted policies and decisions were being implemented. Those are important but controversial ones were not. To change this situation, healthcare needs mapping was introduced in Poland. Its aim is to provide data and thereby to enforce indispensable changes in Polish health care system. In presentation we discuss some examples of recent results.

TB13

Van Weelede Zaal, Fourth Floor

Predictive Analytics for Biomedicine and Clinical Decision
Invited: Healthcare Data Analytics and Machine Learning
Invited Session
Chair: Eva Lee, Georgia Tech, H. Milton Stewart School of, Atlanta, GA, 30332, United States, eva.lee@isye.gatech.edu

1 - MachineLearning: Multi-site Evidence-based Best Practice Discovery
Eva Lee, Georgia Tech, Industrial & Systems Engineering, Ctr. for Operations Research in Medicine, Atlanta, GA, 30312-0205, United States, evakylee@isye.gatech.edu

This study establishes interoperability among electronic medical records from 737 healthcare sites and performs machine learning for best practice discovery. A mapping algorithm is designed to disambiguate free text entries and to provide a unique and unified way to link content to structured medical concepts despite the extreme variations that can occur during clinical diagnosis documentation. Redundancy is reduced through concept mapping. A SNOMED-CT graph database is created to allow for rapid data access and queries. These integrated data can be accessed through a secured web-based portal. A machine learning model (dDAMP) is then designed to uncover discriminatory characteristics that can predict the quality of treatment outcome. We demonstrate system usability by analyzing Type II diabetic patients. DAMP establishes a classification rule on a training set which results in greater than 80% blind predictive accuracy on an independent set of patients. By including features obtained from structured concept mapping, the predictive accuracy is improved to over 88%. The results facilitate evidence-based treatment and optimization of site performance through best practice dissemination and knowledge transfer.

2 - Analyzing Longitudinal and Multi-omic Microbiome Data
Paul Brooks, Virginia Commonwealth Univ., Dept of Stat., Sci. and OR, P.O. Box 843083, Richmond, VA, 23284, United States, jbrooks@vcu.edu

Advances in sequencing technology have facilitated comprehensive surveys of the human microbiome, the community of microorganisms that reside in various body habitats. Longitudinal and multi-omic measurements provide a glimpse of the dynamics of host-microbiome interactions which can provide insight into human health and disease. These high-throughput measurements pose unique challenges for data analysis, motivating the development of new methods. In this talk we describe new methods and strategies for microbiome data.

3 - Incorporating Dose-prediction within a Personalized Treatment Paradigm
Xin Wei, Georgia Institute of Technology, Atlanta, GA, United States, xwei36@gatech.edu, Eva Lee

This work is joint with Grady Memorial Hospital. The management of gestational diabetes mellitus (GDM) focuses on close monitoring of a patient’s blood glucose level while the clinician experiments with dosing strategy based on some clinical guidelines and his/her own experience. This work proposes a drug-effect-based personalized approach to improve treatment outcome for GDM patients. First, a pharmacokinetic and pharmacodynamics (PK/PD) model is established to uncover and predict drug effect based on analysis of anti-diabetic drug dosage and the blood glucose level recorded in the titration period of each patient. This personalized evidence is then incorporated within a treatment plan optimization model to generate optimal dosing strategy. In a retrospective study, personalized drug effect and disease progression are established using the first 2-3 weeks of treatment data. The optimized dosing strategy gives better glycemic control than those used in real practice; it also uses lower drug dosage. The personalized predictive treatment planning system improve clinical decision, facilitating cost-effective outcome-driven treatment.
Thursday, 12:00PM - 2:00PM
Willem Burger Zaal
Lunch Plenary
The INFORMS contribution for the Health Systems and Hospitals of the Future
Eric de Roodenbeke, CEO of the International Hospital Federation, Erik Gerritsen, Government of the Netherlands
Over the past years, The Dutch Health System has received considerable international praise. At the same time however, there are concerns about the sustainability, and the adaptations that are needed to meet future societal needs. In most scenarios, information technology and analytics play an important enabling role to provide solutions for the challenges ahead. Much of the discussion on making adaptations to health systems, whether in The Netherlands or abroad, focus around the pivotal role of hospitals. In addition to other advances, information technology will change their relationships with patients, with primary care, and is already bringing some of the services from the real physical world to the internet. There is a role to play for Operations Research and Analytics to design these transitions and develop their cost-effectiveness. Two highly distinguished guests will share their views on these developments. Erik Gerritsen, Secretary General of the Dutch Ministry of Health, Welfare and Sports will position the Dutch health system and unveil the plans to meet the future challenges. Eric de Roodenbeke, CEO of the International Hospital Federation, will discuss the present and future roles of hospitals, and share his views on the role of information technology and analytics. After presenting their views, the plenary speakers will involve the audience through a series of propositions regarding the contribution the INFORMS community can make to promote effective solutions for the identified challenges.

Thursday, 1:30pm - 3:00pm
TC01
Van Cappellen Zaal, Ground Level
Healthcare Informatics
Sponsored: Health Applications
Sponsored Session
Chair: Rema Padman, Carnegie Mellon University, Pittsburgh, PA, 15213, United States, padman@cmu.edu
1 - Addressing Health Disparities using Smartphones
Sriram Iyengar, Texas ABM Health Science Center, Houston, TX, United States, iyengar@medicine.tamhsc.edu
Health disparity populations encounter great difficulties in understanding clinical information such as medical advice from providers about the nature, prevention, and management of their illnesses. The widespread penetration of smart phones even among low social-economic populations in the US offers an opportunity to remedy this situation. We describe how Persuasive Technology and Elderly Technology can be used to address the needs of this population.

2 - Advancing Healthcare Delivery through an Integrated Research Electronic Health Record Model
Lydia Drumwright, University of Cambridge, Cambridge, United Kingdom, lnd23@medschl.cam.ac.uk
The intrinsic belief that electronic health record (EHR) systems can change the delivery of care has inspired a wave of adoption of fully integrated EHR systems across high-income countries. While providing potential gains in patient safety, current EHR systems in isolation are not likely to dramatically change healthcare delivery. In order to support the full potential of an EHR, translational research and development must be embedded in the infrastructure. In October 2014, our hospital trust started using a fully integrated EHR, including a research model to maximise intelligent use of routinely collected data. Herein, we will demonstrate how specific exemplar projects are enabled by this system.

3 - User Perspectives on using M-health Technologies to Support Opioid Addiction Recovery
Esra Alagöz, University of Wisconsin, Madison, WI, United States, calagoz@wisc.edu
The most common outcome of treatment for opioid dependence is early relapse. To reduce early relapse, we developed and currently testing a smartphone application called A-CHESS. In this presentation, we will present our findings on patient perceptions of the effects of using A-CHESS, the most and least useful services in A-CHESS, gender-specific effects, and how patients feel about various A-CHESS services over time.

4 - Analysis of Game Telemetry from a Pediatric Health Intervention
Rema Padman, Carnegie Mellon University, The H. John Heinz III College, 5000 Forbes Avenue, Pittsburgh, PA, 15213, United States, padman@cmu.edu, Disha Gupta, Ketan Deshmukh, Rema Padman
Pediatric obesity is a growing epidemic, with unhealthy eating habits and poor physical activity being major contributors. While video and mobile games show a positive impact on behavior change in children, the mechanisms underlying game play that impact outcomes of interest are poorly understood. We examine the impact of a novel mobile gaming app on design of behavioral interventions by learning from the rich and unique game telemetry generated from a randomized controlled trial of app use by school children. We build and analyze chronological sequences of game plays to understand key patterns in game mechanics that players utilize as they navigate the game, and possible implications of the results.

TC02
Arcadia Zaal, First Floor
Emergency Medical Services III
Contributed Session
Chair: Mohammed Skiredj, École Nationale Supérieure, 10 Rue Jose Frappa, Saint-Etienne, 42000, France, mohammed.skiredj@emse.fr
1 - Configuring Service Production Function for Emergency Medical Services
Ram Babu Roy, Assistant Professor, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India, rambabu@see.iitkgp.ernet.in, Sreekantan V K, Paul M Llirranken
The service production function for Emergency Medical Services comprises three configurations: self-service, collaborative service, and service factory. Defining the roles and responsibilities of customer and provider optimally in each configuration is crucial for value co-creation. Game theoretic concepts are designed to use the contracts governing the service configurations.

2 - A Minimum P Envy Mathematical Model for Locating Emergency Medical Service Centers Solved by Robust Meta Heuristics
Roya Soltani, Islamic Azad University, Science and Research Branch, Shahreza Gharb, Darya Blv, Tehran, 1466948434, Iran, Islamic Republic of, roya.soltani@gmail.com, Mohammad Khalilzadeh, Ali Shahid Sales
For all customers to have an equal chance to obtain services from EMS centers, inequity among all customers must be reduced. For this purpose, we make use of the minimum envy location problem and expand it to simultaneously minimize the total weighted envy cost, service costs by ambulances at EMS centers, the establishment costs of EMS centers and purchasing costs of ambulances. Since the problem is NP-hard, metaheuristics with tuned parameters by Taguchi method are used to find the location of EMS centers, the number of ambulances assigned to each center and assignment calls of demand zones to EMS centers. The model is implemented to some problem instances and the results are analyzed.

TC03
Zeelenberg Zaal, Second Floor
Public Health: Models and Empirics
Invited: Public Health and Policy Making
Invited Session
Chair: Joel Goh, Harvard Business School, Boston, MA, 02163, United States, joelgoh@alumni.gsb.stanford.edu
1 - Can Patient Arrivals to the Emergency Department be Modelled by Simple Waves?
Donald Lee, Yale School of Management, 165 Whitney Ave, Box 208200, New Haven, CT, 06520, United States, donald.lee@yale.edu, Ningyuan Chen, Sahand Neghaban
Exploiting the fact that real world arrivals processes exhibit cyclic (though not necessarily periodic) behaviour, we propose a surprisingly simple procedure for obtaining a compact and analytic description of the underlying arrival process from data. Such a model is clearly useful for both simulation and modeling purposes, and the procedure itself comes with clean theoretical guarantees. We apply it to arrivals data from an emergency department to examine differences in arrival patterns by illness severity.
2 - Deployment Guidelines for Community Health Workers in Sub-Saharan Africa
Jonas Oddir Jonasson, MIT Sloan School of Management, 30 Memorial Drive, E62-588, Cambridge, MA, 02142, United States, joj@mit.edu, Carri Chan, Sarang Deo, Jeremie Gallien
Community health workers (CHWs) are increasingly important to the delivery of health care in many African countries. Leveraging an extensive dataset featuring time, clinical, and demographic information for CHW visits in Ghana, we develop a stochastic model describing the health dynamics of a population served by a time-constrained CHW. This model supports the design of managerial guidelines for patient prioritization and catchment area assignment in a CHW operation.

3 - Evidence of Upcoding in Pay-for-Performance Programs
Hamza Sridhar Bastani, Stanford University, 10 Comstock Circle, Apt 304, Stanford, CA, 94305, United States, hrsidhar@stanford.edu, Joel Goh, Mohsen Bayati
Medicare has sought to improve patient care by penalizing providers for hospital-acquired infections (HAIs). However, these efforts may be undermined if providers upcode, i.e., mis-report HAIs (possibly unintentionally) to increase reimbursement. Identifying upcoding is challenging due to unobservable confounders. We exploit state-level variations in adverse event regulation and instrumental variables to estimate that over 10,000 infections (nearly 20%) are upcoded each year, resulting in an added cost of $200 million. Our findings suggest that increasing financial penalties alone may not reduce HAI incidence. We make several policy recommendations accordingly.

4 - The Cost of Workplace Stressors: Comparisons Between The United States and Europe
Joel Goh, Harvard Business School, Morgan Hall 495, Solders Field Road, Boston, MA, 02163, United States, jgoh@hbs.edu, Jeffrey Pfeffer, Stefanos Zenios
The negative health effects of psychosocial work stressors such as long work hours, low job control, and economic insecurity are well-established. Nonetheless, an open question that organizational decision makers and public policy has yet to answer is the extent to which these negative outcomes and costs can be realistically remediated. In this research, we apply a mathematical model to estimate the extent to which the U.S. toll is preventable by comparing the estimated health consequences of work environments in the United States with similar conditions in Europe.

3 - Health Analytics Lead to More Questions
Ramesh Sharda, Oklahoma State University, Spears School of Business, Institute for Research in Info. Systems, Stillwater, OK, 74078-0555, United States, ramesh.sharda@okstate.edu, Pankush Kalgotra
As we amass more data, we have an opportunity to analyze a pseudo population to better understand differences in health across population groups. The way patients belonging to different population groups develop comorbidities can have a major impact on their health outcomes. We draw on the network theory and develop multiple comorbidity networks for different population groups based on gender, race, etc. using Centor database in Center for Health Systems Innovation. Then, we compare their structural properties, which leads to developing multiple questions that need to be explored in the future clinical, economic and policy research.

TC05
Schadee Zaal, Third Floor
Patients, Physicians, and Their Interactions
Invited Session
Chair: Joel Goh, Harvard Business School, Harvard Business School, Boston, MA, 02163, United States, jgoh@alumni.gsb.stanford.edu
Invited: Health Operations Management

1 - Conspicuous by its Absence: Diagnostic Expert Testing under Uncertainty
Tinglong Dai, Johns Hopkins University, 100 International Dr, Baltimore, MD, 21202, United States, dai@jhu.edu, Shubhranshu Singh
A diagnostic expert helps clients assess their conditions and recommends courses of action. When the expert’s diagnosis is imperfect, costly gnostic testing may be required to reveal the clients’ true conditions. For an expert concerned about both the clients’ utility and her own reputation as a highly skilled professional, there is an opportunity for the expert to choose the diagnostic process to influence the clients’ perception. Our paper represents an initial attempt to formally link diagnostic uncertainty and information asymmetry, and provides implications for the phenomenon of under-testing in the U.S healthcare system, which, despite its prevalence, receives little attention.

2 - A Robust-stochastic Approach to Data-driven Patient Scheduling in Emergency Departments
Shuangchi He, National University of Singapore, 1 Engineering Drive 2, Dept. of Industrial and Systems Engineering, Singapore, 117576, Singapore, heshuangchi@nus.edu.sg, Melvin Sim, Meilin Zhang
Emergency care necessitates adequate and timely treatment, which has unfortunately been compromised by crowding in emergency departments (EDs). We study patient scheduling in EDs in order to model the records on patients’ door-to-provider times and lengths of stay to be collectively met with the greatest probability. Exploiting patient flow data, we propose a hybrid robust-stochastic approach that provides a computationally amenable formulation and yields satisfactory solutions to the patient scheduling problem. The hybrid formulation enables us to develop a dynamic scheduling algorithm for making recommendations about the next patient to be seen by each available physician.

3 - Assessing the Cost of Physician Burnout in the United States
Joel Goh, Harvard Business School, Morgan Hall 495, Solders Field Road, Boston, MA, 02163, United States, jgoh@hbs.edu, Shasha Han, Chia-Yin A Sinisky, Tait D. Shanafelt, Liselotte N. Dyrbye, Mickey Trockel, Lynne C. Fiscus
Occupational burnout is a psychological state that is characterized by a loss of motivation or enthusiasm at work and feeling of cynicism. Burnout in physicians is known to be associated with an increased propensity to reduce in their work effort and an increased frequency of medical errors. Understanding the costs of physician burnout can guide clinical leadership in making better operational choices or investing in burnout mitigation interventions. In this research, we develop a mathematical model and calibrate it using data to assess the annual cost of physician burnout in the United States.
TC06
Van Beuningen Zaal, Third Floor
Invited: Tutorial
Data and Modeling Challenges in Low and Middle Income Settings
Invited: Disparities in Health, Low and Middle Income Settings, Global Health
Invited Session
Chair: Hari Balasubramanian, University of Massachusetts-Amherst, 160 Governors Drive, Amherst, MA, 01003, United States, hbalasubraman@ecs.umass.edu
1 - Data and Modeling Challenges in Low and Middle Income Settings
 Hari Balasubramanian, Univ of Massachusetts-Amherst, 160 Governors Drive, Amherst, MA, 01003, United States, hbalasubraman@ecs.umass.edu
In this tutorial, we will discuss the operational challenges in coordinating clinical and social needs for patients in low and middle income settings. We will use a unique longitudinal dataset from Camden, New Jersey to illustrate topics such as the statistical prediction of individual trajectories and the staffing implications for a multidisciplinary care team consisting of nurses, community health and social workers. The tutorial will make use of a short video, detailed analysis of the dataset as well as interactive discussion with the audience to explore methodologies for such problems.

TC08
Ruys Zaal, Fourth Floor
Patient Scheduling and Assignment
Invited: Health Operations Management
Invited Session
Chair: Aleida Braaksma, Massachusetts Institute of Technology, Cambridge, MA, 02142, United States, braaksma@mit.edu
1 - Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs
 Christos Zacharias, University of Miami, 5250 University Drive, Room 401 K/E, Coral Gables, FL, 33146, United States, czacharias@miami.edu, Tallys Yunes
We address the problem of designing appointment scheduling strategies that account for patients' no-show behavior, non-acceptance, emergency walk-ins and random service times. We maintain the discrete nature of the appointment scheduling problem by considering arrival epochs with discrete supports. We demonstrate that the optimal scheduling strategy minimizes a multimodular function, and that a polynomial-time local search algorithm terminates with a globally optimal solution.
2 - Online Appointment Scheduling with Consideration of Service Durations and Time Preferences
 Anne Zander, Karlsruhe Institute of Technology, Karlsruhe, Germany, anne.zander@kit.edu, Uta Mühling
We consider an online appointment system that lets patients choose an appointment out of a set of time slots. We want to decide which time slots to offer to a specific patient in order to maximize schedule utilization while satisfying a fairness measure. Hereby, we take different service durations and time preferences of patients into account. We model the problem as a Markov decision process and present a heuristic for realistic problem instances that solves a stochastic ILP for each requesting patient. In a simulation the heuristic is tested and compared to simpler strategies.
3 - Advance Multi-appointment Scheduling with Resource Compatibility Restrictions
 Ingeborg Blikker, University of Twente, Drienerloalaan 5, Enschede, 7522 NB, Netherlands, i.a.blikker@utwente.nl, Antoine Saure, Xiang Claire Ma, Nathan Horvath, Scott Tyldesley, Martin L. Puterman
To provide radiotherapy patients with timely access to care, we consider an advance scheduling problem in which patients require a series of radiation appointments on one of several treatment units. Unit requirements vary per patient type. In practice, appointments are typically planned in the first available slot of a suitable unit, leaving no space for urgent patients. We formulate a Markov decision process to identify good policies for scheduling appointments on units, while reducing access times in a cost-effective manner. We use value function approximation and column generation to derive approximate solutions, and simulate their performance for a case of the British Columbia Cancer Agency.

TC09
Van Riekkovors Zaal, Fourth Floor
Scheduling and Planning VII
Contributed Session
Chair: Nikky Kortbeek, University of Twente, Nellejte Snijdershofs 29, Wijk aan Zee, 1949BS, Netherlands, n.kortbeek@utwente.nl
1 - Enhanced Patient Dispatching Rules for Triage Process in Emergency Departments
 Guvenc Dik, PhD Candidate, Queensland University of Technology, 2 George St, Brisbane, 4000, Australia, guvenc.dik@hdr.qut.edu.au
The emergency department (ED) is a dynamic and complex system. Triage determines initial clinical needs and prioritizes order in which patients are to be seen based upon their presentations. A scheduling model for patient flow is developed and enhanced dispatching rules for the triage process are investigated using stochastic treatment times. Results show that the maximum waiting and length-of-stay times of ED patients are decreased with enhanced dispatching rules.
2 - A Mixed Integer Linear Programming Approach for the Patient Admission Scheduling Problem
 Janaina Marchesi, PUC-Rio, Rio de Janeiro, Brazil, janainamarchesi@gmail.com, Leonardo Bastos, Silvio Hamacher
This paper addresses the Patient Admission Scheduling (PAS) problem corresponding to the assignment of elective patients to beds given the medical needs and the patient preferences. The best solutions in literature were provided by heuristic methods and no optimal solution has been found. Hence, this paper presents a mixed-integer linear model to solve the PAS with a new modelling approach for the constraints found in the literature to achieve optimal results for the tested instances.
3 - Developing a Simulation Framework for the Integrated Hospital Scheduling Problem
 Joren Marynissen, KU Leuven, Naamsestraat 69, Leuven, 3000, Belgium, joren.marynissen@kuleuven.be, Erik Demeuremeester
The integrated hospital scheduling problem focuses on scheduling patients who need multiple appointments. These problems originated in the integrated healthcare literature and try to devise a schedule in which the patient receives the full treatment as soon as possible. For this problem, we developed a new simulation package (SimIn) that is capable of testing multiple scheduling strategies and measuring the impact of these strategies on the operational processes. The package was tested using data from a cardiology department in a large university hospital.
4 - Integral Capacity Management in St Maartenskliniek – Science in Practice
 Nikky Kortbeek, CEO / Researcher, Rhythm, spin-off University of Twente, Nellejte Snijdershofs 29, Amsterdam, Netherlands, n.kortbeek@utwente.nl
Over the past decade, the results of the research center CHOCER of the University of Twente have shown that developing and applying OR/MS techniques can lead to a better understanding and functioning of healthcare delivery. Following its mission to maximize practical impact, it founded the spin-off company Rhythm in 2014. Please join a short trip along some of the addressed research topics and their applications. This storyline serves as a living example of CHOER’s innova- tion cycle: new insights continuously leading to new questions, in turn leading to new research and new solutions. The scientific results culminate in the practical case of the St Maartens Clinic. In this innovative Dutch hospital, integral planning & scheduling of surgeries, operating rooms, diagnostics and beds based on OR/MS techniques is set as the new standard.
2 - Evaluating Sugary Drinks Tax using Dynamic Addiction Model
Masakazu Ishihara, New York University, Tisch Hall 818, 40 West 4th Street, New York, NY, 10012, United States, misihara@stern.nyu.edu, Jong Yeob Kim
This paper presents a dynamic structural model to evaluate the effect of a fat tax on soda purchases. High consumer responsiveness to the frequent price promotions in the soda category suggests that price-based instrument can be an effective policy tool in combating obesity. Our modeling framework incorporates unobserved heterogeneity, stockpiling behavior, and rational addiction and endogenous consumption that depend on past consumption history. We conduct counterfactuals based on realistic policy scenarios and evaluate how different tax policies affect soda purchases.

3 - Strategic Forecasting and Alternative Payment Models:
How Scenario-based Planning can Predict Health Care Fraud
Davide Sulek, Principal/Director, Booz Allen Hamilton, 901 13th Street NW, Suite 400, Washington, DC, 20005, United States, sulek_david@bah.com, Kelsey Carpenter, Ari Friedman
Fraudulent actors in the health care market are constantly adapting, however analysts typically look to the past to predict future instances of fraud. This method of detection is not always effective, and could be augmented by a strategic forecasting model that uses futuristic scenario-based planning to discover areas of weakness. To demonstrate the power of scenario-based planning, the presentation will highlight a future where Accountable Care Organizations face constant attacks from fraudulent actors with and without the Patient Protection and Affordable Care Act in place.

4 - Universal Healthcare: Economics and Morality
Rakesh Kumar Sarin, Payne Professor of Management, University of California-Los Angeles, Anderson School, Suite B519, 110 Westwood Plaza Box 95148, Los Angeles, CA, 90095-1481, United States, rakesh.sarin@anderson.ucla.edu
I make a case for universal healthcare as a rational economic and moral policy. The argument relies on the “original position” advanced by Rawls in his celebrated Theory of Justice. My conclusion, however, is different than what Rawls proposed. I use the framework of decision theory when one is ignorant about the future state. Under the “veil of ignorance” a rational economic person will prefer a minimum level of universal healthcare and beyond which will maximize average utility. Such a policy though motivated by economic reasoning does have a moral force. I will use a few cases from medical decision making and healthcare policy to illustrate the distinction between Rawls’ maximin rule and my proposed rule.
3 - Analyzing Septic Care Management through Discrete Event Simulation
Nishant Singh, North Carolina State University, 717 Resplendent Place, Raleigh, NC, 27603, United States, nsingh6@ncsu.edu, Julie Simmons Ivy, Maria Esther Mayorga
Infection and SEPSIS is one of the leading causes of death worldwide. Strict treatment guidelines exist in hospitals that feature complex systems involving multiple personnel and forms of technology. Many of these guidelines are time-based and tend to cause strain to the system. We used discrete event simulation to study the temporal management of resources and to provide recommendations to clinicians practicing in resource-limited settings.

TC13
Van Weeleke Zaal, Fourth Floor
Personalized Medicine via Cutting Edge Machine Learning
Invited: Healthcare Data Analytics and Machine Learning Invited Session
Chair: Dimitiris Bertsimas, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States, dbertsim@mit.edu
1 - Personalized Diabetes Management using Electronic Medical Records
Daisy Ying Zhou, Massachusetts Institute of Technology, Cambridge, MA, United States, zhou@mit.edu, Nathan Kallus, Alex Weinstein, Dimitris Bertsimas
Current clinical guidelines for managing type 2 diabetes do not differentiate on patient-specific factors. We propose a personalized, data-driven prescriptive algorithm. For each visit among 10,806 type 2 diabetes patients from the electronic medical records, we analyzed the range of outcomes (HbA1c) under alternative care using a k-nearest neighbor approach. The algorithm prescribes the regimen with best outcome if the improvement from switching regimens exceeds a threshold. We evaluated the effect of recommendations on matched patient outcomes from unseen data. Among the 48,140 patient visits in the test set, the algorithm’s recommendation mirrored the observed standard of care in 68.2% of visits. For patient visits in which the algorithmic recommendation differed from the standard of care, the mean post-treatment HbA1c under the algorithm was lower than standard of care by 0.44±0.03% (p<0.001).

2 - Personalized Medicine for Traumatic Brain Injury
Jack Dunn, Massachusetts Institute of Technology, Cambridge, MA, United States, jackdunn@mit.edu, Dimitiris Bertsimas, Yuchen Wang, Tom Trikalinos
Traumatic brain injury in children can be identified through CT imaging, which carries risks of radiation-induced malignancies. The current US practice uses a CART-based screening procedure to identify children at very low risk of brain injury that should not receive a CT scan. We apply new cutting-edge machine learning methods (Bertsimas and Dunn, Optimal Trees, Machine Learning, 2017) to this same problem, and show that our resulting models achieve the same sensitivity as the current practice (99%) while reducing the number of CT scans conducted by 25-50%.

3 - Personalized Medicine for Coronary Heart Disease
Agni Orfanoudaki, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States, agniorf@mit.edu, Dimitiris Bertsimas
Coronary Heart Disease is the most common type of heart disease and the leading cause of death in the United States for women and men. However, a common approach to determine which treatment to prescribe to which patient has not been established yet. On that basis, we recognized the substantial benefit that algorithmic approaches and machine learning could bring in this field. We developed a personalized prescriptive algorithm that uses the electronic medical records of 21,617 patients to maximize the expected time to an adverse event (Myocardial Infarction/Stroke) after diagnosis. Overall, the algorithm agrees with the current practice in 73.5% of the cases and achieves 12% improvement in the expected time.

4 - Personalized Treatments for Breast Cancer
Emma Gibson, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States, emgibson@mit.edu, Dimitris Bertsimas, Agni Orfanoudaki
There are many treatment options available to breast cancer patients, but it is often difficult to predict how successful these treatments will be for individual cases. We have developed a personalized treatment algorithm to select and evaluate treatment options based on individual diagnostic factors and existing medical conditions. Applied to cases in the SEER-Medicare database, our algorithm recommended alternative treatment options for approximately 10% of test subjects, resulting in an average estimated increase in survival time of 8 months within the first 8 years after diagnosis.

Thursday, 3:30pm - 4:30pm
Plenary
Willem Burger Zaal
Brian Denton Plenary
Plenary Session
1 - Operations Research in Medicine: Past, Present and Future
Brian T. Denton, University of Michigan, Ann Arbor, MI, 48109-2117, United States, bdenton@umich.edu
Operations Research (OR) methods such as decision analysis, simulation, stochastic models, and optimization, have a long and rich history of use for research and practice in medicine over the last several decades. Applications include cancer screening, diabetes treatment, glucose monitoring, organ transplants, radiation therapy, and many others. In this talk I will discuss some of the ways OR has had an impact on medicine in the past, drawing on several specific examples in the area of chronic diseases. Next, I will discuss some contemporary applications and discuss the research challenges and the opportunities these problems present to drive the development of new OR methods. Finally, I will conclude by summarizing some of the exciting new directions where OR can play a much needed role in the future including personalized medicine, biomarkers for early detection of diseases, and the development of artificial and regenerated organs.

Friday, 8:00am - 9:30am
FA01
Van Cappellen Zaal, Ground Level
How Technology and Analytics Create Value in Healthcare
Sponsored: Health Applications
Sponsored Session
Chair: Yasin Ceran, Santa Clara University, Santa Clara University, Santa Clara, CA, 95050, United States, yceran@scu.edu
1 - High Resolution Optical DNA Mapping for Identification of Genomic Variations
Yasin Ceran, Santa Clara University, 2730 Park Ave., Apt 4, Santa Clara, CA, 95050, United States, yceran@scu.edu, Murat Baday
Optical mapping and newer genome mapping technologies based on nicking enzymes provide low resolution but long-range genomic information. The optical mapping technique has been successfully used for assessing the quality of genome assemblies and for detecting large-scale structural variants and rearrangements that cannot be detected using current paired end sequencing protocols. Here, we review several algorithms and methods for building consensus optical maps and aligning restriction patterns to a reference map, as well as methods for using optical maps with sequence assemblies.

2 - The Interplay among Health Information Technology, Continuity of Care and Patient Readmissions
Changmi Jung, Johns Hopkins University, 100 International Dr, Rm 1323, Baltimore, MD, 21202, United States, changmi@jh.edu, Sezgin Ayabakan
In health care, continuity of care has long been the core discussion element of improvement of care quality and patient health outcomes. Emerging health information technologies (HITs) are reducing the gap in the degree of available information, and thus, empowering more seamless care. In this study, we examine the effect of HIT on the patient readmissions and the extent of continuity of care. We utilize the state of Maryland’s 2013 - 2016 FY inpatient admission records and present our preliminary findings.

3 - To Predict or Not to Predict: The Case of Inpatient Admissions to the Emergency Department
Idris Adjjerid, Universite de Notre Dame, 358 Mendoza College of Business, Notre Dame, IN, 46556, United States, iadjerid@nd.edu, Sriram Somanchi
The potential of data rich algorithms and systems to augment or even replace clinician judgment and fundamentally change the nature of healthcare is of significant debate. Yet, the challenges associated with incorporating these approaches into clinical settings are largely ignored in current research. We offer an approach that can help optimize prediction value in healthcare by balancing the accuracy of various prediction efforts against their associated costs.
Scheduling and Planning X
Contributed Session
Chair: David A Stanford, University of Western Ontario, Dept of Statistical & Actuarial Sciences, 1151 Richmond Street N, London, ON, N6A 5B7, Canada, stanford@stats.uwo.ca

1 - Scheduling Strategies of Elective Surgeries in Order to Minimize Waiting Times for Emergencies
Roberto Bargetto, PhD Student, Ecole Nationale Supérieure des Mines de Saint-Etienne, 158 cours Fauriel, Saint-Etienne, 42000, France, roberto.bargetto@ense.fr, Federico Della Croce, Thierry Garaix, Xiaolan Xie

In hospitals, serve Emergency Surgeries (ESs) with the right timing lead to high quality of care. When ESs are performed in the Operating Rooms (ORs) used for the elective surgeries, the time when an OR becomes available (an elective ongoing surgery is completed) determines the Waiting Time (WT) for the incoming ES. A strategy to minimize the WT for ESs is proposed in [1], we study some variants of the problem presented in [1] and test different scheduling strategies as well. [1] Van Essen et al. Minimizing the waiting time for emergency surgery. Oper Res Health Care, 1(2-3):34-44, 2012.

2 - Discovering Patterns in Self-reported Care Experience Data and Clinical Outcome Data to Improve Patient Experience
Qianyu Hu, Pennsylvania State University, State College, PA, United States, qph5042@psu.edu, Deepak Agrawal, Yi-Shan Sung, Ning Liu, Sounar Kumara

Over past 25 years, patient satisfaction has gained increasing attention. Research has shown that patient experience is critical to improving clinical outcomes and should be measured in addition to standard quality and safety metrics. Therefore, providing a better patient experience, measuring and reporting is regulatory. However, literature is divided on this. Therefore, it is imperative to study the relationship between patient satisfaction and clinical outcomes. We use HCAsPS survey data to examine the relationship between patient perspective and clinical outcomes, to provide quality care.

3 - The Affine Accumulating Priority Queue: A Model Which Prioritizes Based Upon Acuity and Waiting Time
David A. Stanford, Professor, University of Western Ontario, Western Science Centre 262, 1151 Richmond Street N, London, ON, N6A 5B7, Canada, stanford@stats.uwo.ca, Maryam Mojalali, Richard J Caron, Peter G Taylor, Ilze Ziedins
Previous Accumulating Priority Queue models in the literature have assumed that all arriving customers start to accumulate credits from a starting value of 0. The affine APQ model introduces a new element in terms of an initial class-dependent credit level, from which the accumulated priority grows linearly over time. In this presentation, we consider a two class APQ, and show initially how the initial priority score impacts the duration of the accreditation interval. We then assess the impact of the initial priority score on the waiting time distributions for the low and high priority classes. If time permits, numerical examples will be used to illustrate these concepts.

Operations Management and Systems Engineering Models for Policy
Invited: Public Health and Policy Making
Invited Session
Chair: Edward Anderson, University of Texas-Austin, IROM Department, Austin, TX, 78712, United States, Edward.Anderson@mccombs.utexas.edu

1 - Improving Access Delays from Request to Surgery with Multiple Patient Types
Mark P Van Oyen, University of Michigan, 1205 Beal Avenue, Ann Arbor, MI, 48109-2117, United States, vanoyen@umich.edu, Esmaeil Keyvanshokoob, Maya Bain, Brian T. Denton, Pooyan Kazemian
A stream of research by the authors treats real-time heuristic surgery scheduling policies to manage wait for an appointment, which are stratified by patient type. In addition, an optimization based methodology is able to specify (1) the date for the clinic visit, and (2) the surgery date with the same surgeon seen in clinic. It incorporates stochastic patient arrival mix and volumes and surgery durations (with surgical cancelation information gained in the clinic visit). We present model results based on historical patient data for patient access delay and overtime.

2 - Multi-objective Criteria Scheduling in Healthcare
Amy Cohn, University of Michigan, 1205 Beal Avenue, Department of IOE, Ann Arbor, MI, 48109, United States, amycohn@umich.edu
When scheduling in healthcare, there are many rules and regulations that lead to complex combinatorial optimization problems, often well-suited for mixed integer programming methods. An additional challenge, however, is the frequent need to address multiple objective criteria, which are often qualitative as well. I will discuss examples from both resident scheduling and patient scheduling in endoscopy to motivate discussion about this challenging topic.

3 - Rise and Shock: Optimal Defibrillator Placement in a High-rise Building
Timothy C.Y. Chan, PhD, University of Toronto, Dept. of Mechanical and Industrial Engineering, Toronto, ON, M5S 3G8, Canada, tychan@mie.utoronto.ca
Cardiac arrests in high-rise buildings experience lower survival and longer delays until paramedic arrival. Use of defibrillators can improve survival, but “vertical” placement has not been studied. By modeling cardiac arrest occurrences using floor-specific Poisson processes, we determine the average distance from defibrillator to arrest for two possible defibrillator locations: lobby and elevator. We derive a simple and intuitive analytical result that characterizes when each location is optimal. We also examine maximum and standard deviation of the response distance.
4 - Dealing with Data Generation Mechanism Biases in Burden of Disease Calculations with Big Data
Ozden Fatmir Ali, Associate Professor, Koc University, College of Administrative Sciences, Rumeli Feneri Yolu Sariyer, Istanbul, 34450, Turkey, oaul@ku.edu.tr

Availability of electronic health records, prescriptions, or death registries for population level studies can provide detailed information about disease prevalence, comorbidities, associated risk factors, and sequelae of diseases when analyzed properly. On the other hand, observational data is prone to a number of biases, including in selection, reporting or coding. Further, integration of this information with those from other sources, including academic literature and population health surveys is desired, culminating in predictions with uncertainty intervals. We present our work on predictive models for burden of disease calculations.

■ FA05
Schadee Zaal, Third Floor
Resource Planning in Hospitals
Invited: Health Operations Management
Invited Session

Chair: Jan Schoenfelder, Universitätess Zentrum für Gesundheitswissenschaften am Klinikum Augsburg (UNIXA-T), Universitätess Zentrum für Gesundheitswissenschaften, Friedberg, 86316, Germany, jan.schoenfelder@unikat.uni-augsburg.de

1 - A Column Generation Approach to Flexible Nurse Scheduling under Uncertain Demand
Jan Schoenfelder, Bahnhofstrasse 6, Friedberg, 86316, Germany, jan.schoenfelder@wiiw.uni-augsburg.de

We model a hospital's scheduling decisions for (partially) cross-trained nurses under uncertain demand. While we approximate the true demand distribution by formulating a deterministic equivalent formulation, we are able to incorporate a refined set of possible demand realizations by employing a column generation approach. Based on data collected from three hospitals, we derive insights into the potential benefit that may or may not be gained from employing the cross-trained nurses. Furthermore, we analyze the schedule improvements that result from incorporating possible nurse reassignments into the initial scheduling decisions.

2 - Case Mix Planning under Uncertainty
Sebastian Hof, University of Augsburg, Augsburg, Germany, sebastian.hof@unikat.uni-augsburg.de

Strategic decisions on the case mix are an opportunity for hospital providers to respond to financial pressure. The objective of this work is to evaluate which kinds of uncertainties should be considered in strategic case mix planning. Different stochastic problems considering different aspects of stochasticity are formulated and translated into their deterministic equivalents. The derived recommendations are evaluated simulating operational data. As a result, stochastic influences are ordered by their impact. Concluding, optimal strategies are compared to rules of thumb used in deterministic planning. We apply the analysis to data of a German hospital and show preliminary results.

■ FA06
Van Beuningen Zaal, Third Floor
Disparities
Invited: Disparities in Health, Low and Middle Income Settings, Global Health
Invited Session

Chair: Paul Michael Savage, Iona College, 715 North Avenue, New Rochelle NY 10801 United States psavage@iona.edu

1 - Dental Care Disparities for Low Income Children
Nicoleta Serban, Georgia Institute of Technology, 755 Ferst Drive Ne, Grosseclose 438, Atlanta, GA, 30332, United States, nserban@isye.gatech.edu, Shanshan Cao, Monica Gentili, Paul Griffin, Susan Griffin

For children, tooth decay remains one of the most preventable chronic conditions. One reason for this is a lack of access to dental services. We evaluate access to dental care for children in the state of Georgia. We used optimization models matching need with supply of dental preventive services for children under access constraints. We used the models to evaluate the impact of oral health policies for improve access. We found that more than half of the pediatric population in the state of Georgia do not have access to preventive dental care. Moreover, those eligible for public insurance need to travel very large distances. These extreme disparities call for substantive changes in oral health policy.

2 - Business Application of Machine Learning for Healthcare Transformation
Paul Michael Savage, Iona College, 715 North Avenue, New Rochelle, NY, 10801, United States, psavage@iona.edu

Machine Learning and the building of massive data-lakes associated with Population Health are transforming the decision support resources of Governance and Executive Leaders. The US Healthcare economic model is embracing ‘Risk’ & Disparity, based upon several simultaneous quantitative and qualitative metrics along with significant data enhancements which represent multiple analytical dimensions. These require a new understanding of modeling, forecasting and defining strategic business initiatives. The constraints and analytic capabilities will be explored.

■ FA08
Ruyu Zaal, Fourth Floor
Scheduling Optimization for Healthcare Management
Invited: Health Operations Management
Invited Session

Chair: Gang Du, PhD, East China Normal University, No. 500 Dongchuan road, Shanghai, 200241, China, gdu@dbm.ecnu.edu.cn
Co-Chair: Jianjun Wang, Dalian University of Technology, 2 Linggong Road, Dalian, 11624, China, drwangji@dlut.edu.cn

1 - Multi-objective Ant Colony Optimization Method on Operating Room Scheduling Problem
Aijun Liu, Xidian University, No.2, South Taibai Road/Street, Hi-Tec, Xi’an, China, liuajun2013@gmail.com

This research described the operating room scheduling problem with multiple objectives. A surgery planning mathematical model was developed with the objectives of minimizing the surgery cancellation risk and illness deterioration risk. An ant colony algorithm was designed to solve the multi-objective optimization problem. To take advantage of ant colony algorithm solving routing problem, Hybrid strategy is considered in the coding scheme. The approach used a variation of the adaptive grid and -dominated to produce well-distributed Pareto fronts. Experiment results show the proposed algorithm is effective and practical.
2 - A Distributionally Robust Optimization Approach for Solving Surgery Blocks Allocation Problems
Yu Wang, Shenyang Agricultural University, 133 Dongling Road, Shenyang, China, wangyug@163.com, Yu Zhang
Managing operating room resources efficiently is a difficult task as patients’ surgery duration has high variability. We propose a distributionally robust optimization approach for solving surgery blocks allocation problems. An ambiguous set consisting of means, absolute variance and support is built based on historical real-life data. Both exact and approximate solutions are obtained by deriving linear integer counterparts. Upper and lower bounds of the robust problem are also found. A three-point distribution heuristic is provided to find the near-optimal worst-case solution. The developed approach is tested on real-life instances and demonstrates their ability.

3 - The Decision-Making of Large Medical Equipment Scheduling: From the Perspectives of Economic Benefit and Operational Efficiency
Gang Du, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China, gdu@dbm.ecnu.edu.cn, Xiaoling Ouyang
This article aims to propose a decision scheme for hospitals to address the time scheduling problem concerning multiple types of patient diagnostic equipment. We propose five solutions and finally determine the best one by constructing a finite horizon Markov decision process model. Results indicated that for the case of two PET-CT machines, although the optimal strategy of profit is better than the heuristic strategy, other performance indicators presented by optimal strategy and other suggestive strategies are similar. For the case of two scanners, other performance levels of all types of patients have reduced significantly.

4 - A Scenario-based Robust Optimization Approach for Surgeries Scheduling with a Single Specialised Human Resource Server
Jianjun Wang, Dalian University of Technology, 2 Linggong Road, Dalian, 11624, China, drwjiangj@dlut.edu.cn, Chunlai Liu
This paper addresses a surgeries scheduling problem with a single server in charge of key medical facility. A surgery can be processed with a precedence setup by the server on one of available operating rooms. The setup can be processed at only one surgery at any time. Thus, it is critically important to simultaneously consider the setup precedence and operating room scheduling decisions. A robust model is presented for the problem to minimize the makespan associated with an uncertainty set for surgery durations. In order to evaluate the goodness of the proposed robust model, a commercial optimization solver and several constructive heuristics which solve larger size instances are provided.

3 - A Model for Allocation of Medical Specialists in a Private Hospital Network
Nananta Suppaciporn, Chulalongkorn University, 2 Soi Soonvijai 7 New Petchburi Road, Bang Kapi, Huai Khwang District, Bangkok, 10310, Thailand, noona.su@gmail.com, Krit Pongpitul
As human diseases are getting more complex, the need for medical specialist consultation is more pronounced. This study aims to construct allocation models using a multi-objective optimization approach to all demand sites within the Bangkok Dusit Medical Services (BDMS) network. Our models consist of 13 specialist types in 4 main disease groups of the BDMS network. The models feature 3 objectives: 1) Minimizing cost, 2) Meeting physician engagement and 3) Providing proper quality of care. It was found that the more the requirements, the less the capability of the model to solve for specialist allocation. The model should then be as most flexible as possible to succeed the allocation process in all areas.

4 - Planning the Number and Distribution of Specialist Palliative Care Personnel for Nova Scotia
Majid Taghavi, Assistant Professor, Dalhousie University, 5850 College St, Tupper Medical Building, Halifax, NS, B3H 4R2, Canada, taghavi@dal.ca, Grace Johnston
The population is ageing in many countries, and this means that an increasing number of adults will need a palliative approach at the end of their lives. In the past, palliative care was considered mainly for persons dying of cancer, but increasingly a palliative approach is being advised for individuals with organ failure and frailty. In this research, we propose a stochastic programming approach to find the optimal number of physicians, nurses, and social workers for Nova Scotia palliative care system over next 20 years. The model is capable of handling similar workforce planning problems in healthcare.

FA10
Plate Zaal, Fourth Floor
Emergency Medical Services IV
Contributed Session
Chair: S. Parthasarathy, Indian Institute of Technology-Madras, Sardar Patel Road, Adyar, Chennai, 600036, India, parthasarathy.subburaj@gmail.com

1 - Ambulance Driver Timetabling
Mohammed Skiredj, PhD Student, École Nationale Supérieure des Mines de Saint-Étienne, 158 Cours Fauriel, Saint-Étienne, 42023, France, mohammed.skiredj@emse.fr, Thierry Garaix, Xiaolan Xie
This work addresses the timetabling problem for ambulance crews. The day before, based on the set of booked requests the working period of each driver is computed. The previous planning built two weeks ago using demand forecast has to be preserved as far as possible. The new timetable has to be robust against additional requests over the course of the day, avoiding overtime and delays for requests. This approach is compared to several current planning strategies from two ambulance companies.

2 - Ambulance Dispatching and Relocation – The Portuguese Case
Inês Marques, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001, Portugal, ines.marques.pt@tecnicas.ulisboa.pt, Ana Sofia Carvalho
Emergency Medical Service (EMS) is one relevant health care service since it plays a very important role for any person in an emergency. And daily, thousands of emergencies occur affecting the life of many people. EMS has to manage and mobilize several resources, e.g. expensive and high specialized material equipment and highly skilled staff, whereas providing an effective response to the uncertain emergencies that may occur. In Portugal, the ambulance dispatching and relocation has been a handmade task. This work studies the Portuguese case of EMS and applies optimization approaches to help the decision maker in these tasks.

3 - Using Big Data for the Mobile Facility Routing Problem in Healthcare Delivery
Soheil Davari, Lecturer at Hertfordshire Business School, University of Hertfordshire, Hatfield, Hertfordshire, Hatfield, AL10 9AB, United Kingdom, s.davari@herts.ac.uk, Konstantinos Ampountolas
We will present a mobile facility routing problem with a continuous-time planning horizon using real-time data from a server. A set of vehicles are scheduled and routed in order to provide healthcare services to people considering capacity restrictions and budget issues. We modelled this problem as an infinite dimensional bi-objective mixed-integer programming model and proposed heuristics to solve it. The performance of the heuristics in terms of their solution quality and run-time have been compared. A case study in Glasgow, Scotland is provided as well.
Questions Related to Contraception Access
Saied Samiedalui, Assistant Professor, University of Alberta, 3-40C Business Building, Alberta School of Business, Edmonton, AB, T6G 2R6, Canada, samiedal@ualberta.ca, Steven Shechter, Wendy Norman, Rollin Brant, Stirling Bryan

Almost half of pregnancies in Canada are unintended. Cost is among the important barriers to effective family planning methods and services. Extending government subsidy for contraception has proven to be a cost-effective intervention in many countries. In this research, we develop a simulation model to predict the related health and economic cost and benefit streams likely to result from any policy change in this area, such as provision of universal subsidy for contraception.
1 - Identifying Network Effects in Epidemic Propagation
Kimon Drakopoulos, USC, Los Angeles, CA, United States, drakopouli@marshall.usc.edu, Fanyin Zheng

The analysis of epidemic propagation among populations has been the focus of several studies in different fields including epidemiology, public policy and operations. Existing work assumes an underlying network structure that governs the rate at which epidemics propagate. In this work, we develop and use tools in network econometrics on a rich dataset containing 7 years of data on the propagation of influenza in the United States, environmental factors, vaccination interventions as well as economic indicators. Our results provide a framework for identifying network effects in panel data with serial correlation and shed light on the effect of inter-state traveling on the propagation of influenza.

2 - Do Mandatory Overtime Laws Improve Quality?
Staffing Decisions and Operational Flexibility of Nursing Homes
Susan F. Lu, Purdue University, Krannert 441, West Lafayette, IN, 47907, United States, lu428@purdue.edu, Lauren Xiaoyuan Lu

During the 2000s, over a dozen U.S. states passed laws that prohibit health care employers from mandating overtime for nurses. Using a nationwide panel dataset from 2004 to 2012, we find that these mandatory overtime laws reduced the service quality of nursing homes, as measured by an increase in deficiency citations. This outcome can be explained by two undesirable changes in the staffing hours of registered nurses: decreased hours of permanent nurses and increased hours of contract nurses per resident day.

3 - Dynamic Matching in Kidney Exchange
Itai Ashlagi, Stanford University, Department of Management Sci. and Engr., Stanford, CA, 94305, United States, iashlagi@stanford.edu

We study matching policies in a random dynamic market where some agents are easier to match than others. This asymmetry creates an imbalance: hard-to-match agents wait for partners, while easy-to-match agents are matched almost immediately upon arrival to the market. Matching agents greedily, leads to low waiting times, but leaves more agents without a compatible partner. A greedy policy nevertheless dominates other natural matching policies.

Friday, 10:00am - 11:30am

1 - Changes in Shoulder Muscle Activity After Breast Cancer Surgery: A Pattern Analysis of Electromyographic Data
Young OK Kwon, SooKmyung Women's University, Seoul, Korea, Republic of, yokwon@sm.ac.kr

Alterations in scapular muscle activation and restricted shoulder mobility, which are common with breast cancer patients, have been found to affect upper limb function. This study seeks to uncover factors that can determine scapular muscle-activation ratios by examining the patterns of electromyographic data. A Gaussian filter is applied to smooth the data and then activity differences between affected and unaffected sides are explored. The results show that altered muscle activity patterns are different with shoulder motion, surgery type, and duration after surgery. This biomechanical evidence may support the need of the precision exercise program according to the breast cancer treatment.

2 - Creating and Evaluating the Use of Internet of Things and Analytics for Home-dwelling Elderly
Sharon Tan, National University of Singapore, Singapore, tansl@comp.nus.edu.sg

This study uses IoT and analytics to monitor the activities of home-dwelling elderly daily living to identify relevant behaviours and behavioral changes that can be correlated with risks of mild cognitive impairment and frailty. Appropriate ICT-based interventions (e.g., data visualization and alerts to caregivers) are then applied to mitigate these risks. To evaluate the outcomes of our technology intervention, psychosocial data related to the elderly’s quality of life, social activity participation and activities of daily living will be collected and analyzed.

3 - Does Health Information Technology Affect End-of-life Medicare Spending?
Juhee Kwon, City University of Hong Kong, Hong Kong, Korea, Republic of, juhee.kwon@cityu.edu.hk, M. Eric Johnson

Treating chronic disease is enormously expensive. U.S. patients with chronic illnesses in their last two years of life account for about 32% of total Medicare spending. We seek to identify how the adoption of healthcare IT is associated with Medicare spending in the last 2 years of life. We find that EHRs significantly reduce end-of-life Medicare spending and result in increased patient satisfaction scores. However, we do not find any effect on readmission and mortality rates.

Van Weelde Zaal, Fourth Floor

Incentives in Healthcare
Invited Session
Chair: Itai Ashlagi, Stanford University, Stanford, CA, 94305, United States, iashlagi@stanford.edu

1 - Identifying Network Effects in Epidemic Propagation
Kimon Drakopoulos, USC, Los Angeles, CA, United States, drakopouli@marshall.usc.edu, Fanyin Zheng

2 - Do Mandatory Overtime Laws Improve Quality?
Staffing Decisions and Operational Flexibility of Nursing Homes
Susan F. Lu, Purdue University, Krannert 441, West Lafayette, IN, 47907, United States, lu428@purdue.edu, Lauren Xiaoyuan Lu

3 - Dynamic Matching in Kidney Exchange
Itai Ashlagi, Stanford University, Department of Management Sci. and Engr., Stanford, CA, 94305, United States, iashlagi@stanford.edu

Friday, 10:00am - 11:30am

1 - Changes in Shoulder Muscle Activity After Breast Cancer Surgery: A Pattern Analysis of Electromyographic Data
Young OK Kwon, SooKmyung Women's University, Seoul, Korea, Republic of, yokwon@sm.ac.kr

2 - Creating and Evaluating the Use of Internet of Things and Analytics for Home-dwelling Elderly
Sharon Tan, National University of Singapore, Singapore, tansl@comp.nus.edu.sg

3 - Does Health Information Technology Affect End-of-life Medicare Spending?
Juhee Kwon, City University of Hong Kong, Hong Kong, Korea, Republic of, juhee.kwon@cityu.edu.hk, M. Eric Johnson

Treating chronic disease is enormously expensive. U.S. patients with chronic illnesses in their last two years of life account for about 32% of total Medicare spending. We seek to identify how the adoption of healthcare IT is associated with Medicare spending in the last 2 years of life. We find that EHRs significantly reduce end-of-life Medicare spending and result in increased patient satisfaction scores. However, we do not find any effect on readmission and mortality rates.
3 - Optimization-based Nurse Scheduling for Real-life Instances
Kjartan Kasten Klyve, PhD Student, Norwegian University of Science and Technology, Prinsens gate 61, Trondheim, 7011, Norway, kjartan.klyve@ntnu.no, Henrik Andersson, Marielle Christiansen, Anders Nordby Gullhavn.
Francesco Rugiano Beckmann
We provide a mathematical model used for optimization-based nurse scheduling at a maternity ward at St. Olavs Hospital, Trondheim, Norway. The planning problem at the ward involves allocating work shifts and off-days to 69 employees for a period of 27 weeks, while respecting several scheduling rules and focusing on employees' influence in the process. In fact, all preferences the ward manager could explicitly formulate are included in the mathematical model. A computational study shows very promising results and the model will be the core in a customized decision support tool.

FB03
Zeelenberg Zaal, Second Floor
COST Action ENC-KEP: State of the Art in European Kidney Exchange Programs
Invited: Public Health and Policy Making
Invited Session
Chair: Joris Van de Klundert, Erasmus University-Rotterdam, Ridderkerk, 2983 HE, Netherlands, vandeklundert@bmg.eur.nl
1 - An Overview of KEP Practices in Europe
Peter Biro, Hungarian Academy of Sciences, Budapest, Hungary, biro.peter@krtk.mta.hu
In this talk we will give an overview on the initial descriptions of these programmes, provided by the local coordinators. We will survey the main characteristics of the programmes, their performance and the main questions, challenges identified.

2 - Kidney Exchange in NL, State of the Art and Future Directions
Haas Berendette, Netherland Transplant Stichting, Leiden, Netherlands, b.haas@transplantstichting.nl
In this presentation, we review our history and practices, and outline our plans for future advancements. While the emphasis of the presentation will be on the practical aspects of the program, we also discuss existing and future matching algorithms in the Dutch exchange program, as implemented in software that forms the foundation for the kidney exchange programs in various other countries.

3 - Algorithms for Paired and AttristicKidney Donation in the UK
David Manlove, University of Glasgow, Glasgow, United Kingdom, David.Manlove@glasgow.ac.uk
In this talk I will describe the matching problem and outline the algorithmic techniques that have been used to provide solutions. As of March 2016, 1058 potential transplants have been identified and 658 of these have proceeded to surgery.

FB04
Hudig Zaal, Third Floor
Data Analytics and Machine Learning VIII
Contributed Session
Chair: Faruk Akin, Koç University, Rumelihileri Mah., Rumelihileri Yolu, Sariyer, Istanbul, 34450, Turkey, faakin@ku.edu.tr
1 - A Delay-differential Equation Model of an Intensive Care Unit with State-dependent Service Rates and Return Probabilities
Eman Almehdawi, Assistant Professor, University of Regina, 3737 Wascana Parkway, Faculty of Business, Regina, SK, S4S 0A2, Canada, Eman.Almehdawi@uregina.ca, Arman Ingolfsson
We investigate a fluid model of an Intensive Care Unit (ICU), in which patients are discharged at an adjustable speed, which influences the proportion of patients that require re-admission to the ICU after a delay. We formulate the model as a delay-differential equation. We study the transient and steady-state behavior of the system occupancy in four different regimes and we obtain conditions under which speedup reduces average occupancy.

2 - Bending Healthcare Costs CABG with Improved Processes
Feryal Erhun, University of Cambridge, University of Cambridge, Trumpington Street, Cambridge, CB2 1AG, United Kingdom, f.erhun@jbs.cam.ac.uk
Coronary artery bypass graft (CABG) surgery is a well-established, commonly performed treatment for coronary artery disease—a disease that affects over 10% of US adults and is a major cause of morbidity and mortality. In 2005, the mean cost for a CABG procedure among Medicare beneficiaries in the USA was $32,201 ± $23,059. The same operation reportedly costs less than $2,000 to produce in India. The goals of this study are to (1) identify the difference in the costs incurred to perform CABG surgery by three Joint Commission accredited hospitals with reputations for high quality and efficiency and (2) characterize the opportunity to reduce the cost of performing CABG surgery.

3 - Admission Control in an Intensive Care Unit with Readmission
Faruk Akin, PhD Candidate, Koç University, Rumelihileri Mah., Rumelihileri Yolu, Sariyer, Istanbul, 34450, Turkey, faakin@ku.edu.tr, E. Lenzan Ormeci
We consider an Intensive Care Unit and focus on the effects of early discharge decisions. The system may admit, reject or admit by early discharging a current patient in the ICU. Each discharged patient may join the environment and cause readmission, where we assume that early discharged patients are more likely to join the environment than regularly discharged patients. Arrival processes occur according to a Poisson process with a constant rate while the rate of recurring patients depends on the number of patients in the environment. Length of stay for all patients is an exponentially distributed random variable with the same rate. We investigate the structure of the optimal admission control policy.

FB05
Schadee Zaal, Third Floor
Healthcare Analytics
Invited: Health Operations Management
Invited Session
Chair: Zlatana Dobrilova Nenova, University of Pittsburgh, Pittsburgh, PA, 15217, United States, znenova@katz.pitt.edu
1 - The Impact of No-show Prediction in Appointment Scheduling
Shannon Harris, The Ohio State University, 1005 W 5th Avenue, Unit 533, Columbus, OH, 43212-3085, United States, harris.2372@osu.edu, Michele Samorani
Patient no-shows are very disruptive in outpatient appointment scheduling, as they lead to clinic underutilization, long patient waits, and doctor overtime. Existing studies suggest that predicting the individual patients' no-show probability may lead to a higher-quality schedule, but they fail to quantify the impact of the prediction performance on the schedule quality. Our study aims at filling this research gap by analytically measuring the improvement in the schedule quality resulting from an improvement in the no-show predictive performance. Our results can help practitioners determine how many resources to invest in predictive analytics.

2 - Managing Emergency Physicians in a Multi-facility Management Network
Krista Foster, University of Pittsburgh, 1622 Beechwood Boulevard, Apt 1, Pittsburgh, PA, 15217, United States, kmf88@pitt.edu, Jennifer S Shang
U.S. hospital-based emergency departments (EDs) are mandated by law to receive and treat patients regardless of patients' demographic, socioeconomic, insurance, or medical conditions. Thus, an ED's actual demand depends on external factors and is uncertain when personnel scheduling decisions are made. Furthermore, the growing trend of ED consolidation in the US has intensified the complexity of managing ED staff such as doctors, nurses, and advanced practice providers. We develop a model to optimally schedule these different types of ED personnel.
3 - Optimal Appointment Policy Selection for Chronic Kidney Disease Patients
Zlatana Dobrilova Nenova, University of Pittsburgh, 2720 Shady Avenue, Apt 2, Pittsburgh, PA, 15217, United States, znenova@ Katz.pitt.edu, Jerrold H. May, Luís G. Vargas
We develop a Markov Decision Model, which optimizes the frequencies of regular appointments for patients with chronic kidney disease (CKD) over a pre-specified time horizon. The appointment selection depends on patients’ CKD stage, comorbidities and age. The action space reflects a policy suggested by the National Institute for Health and Care Excellence. The model bases its decisions on trajectory forecasts from a case-based reasoning model drawing on a large-scale case base, a survival model, and appointment duxility estimates.

FB06
Van Boening Zaal, Third Floor
Global Health/Low Income Settings
Invited: Disparities in Health, Low and Middle Income Settings, Global Health
Invited Session
Chair: Kamalini Ramdas, London Business School, London, NW1 4SA, United Kingdom, kramdas@london.edu
1 - Something from Nothing: Financial, Operational, and Social Benefits of Need-based Free Healthcare
Sobhan Asian, RMIT University, Melbourne, Australia, sobhan.asian@rmit.edu.au, Vikrant Vaze, Srinagesh Gavirneni, Omkar D. Palsule-Desai
Need-based free healthcare is an emerging business model that is delivering greater social benefits concurrently with higher financial gains due to its underlying innovative operational, marketing, and philanthropic features. Using Aravind Eye Hospital in India as the setting, we evaluate the role of operational learning, spill-over effects of marketing, and customer segmentation in enabling the success of this philosophy that is increasingly attractive in communities with rampant inequality commonly found in developing countries.
2 - How Does Multichannel Delivery Impact Access to a Care Network? Evidence from Telemedicine in South India
Kraig Delana, London Business School, PhD Program Office, London, NW1 4SA, United Kingdom, kdelana@london.edu, Kamalini Ramdas, Sarang Deo
We empirically examine the impact of introducing a new healthcare delivery channel, specifically, vision centers in rural India where patients consult remotely with an ophthalmologist at an eye hospital via telemedicine. Our objective is to understand how this new channel impacts patient access and outcomes across the care network. We find that vision centers substantially improve access to care, leading to a 5% increase in network visits, of which more than 70% are from new patients. This increase in access prevails despite a 4% decrease in hospital visits. Improvement in outcomes varies by patient needs, with less complex patients benefiting more.
3 - Blueprinting Maternity Care Services in Rural India
Amrita Amrita, Indian Institute of Technology Khargpur, Khargpur, Paschim Medinipur, 721302, India, amrita@itkgp.ac.in, Indranath Banerjee, Ram Babu Roy
One third of the 303,000 global maternal deaths, in 2015, happened in developing countries especially Nigeria and India. It is urgent to figure out how the rural women are utilizing the services by tasks. Average service utilization data does not help in understanding actual utilization. The study analyzes 306 primary data in two rural regions to compare the maternity care service-utilization by tasks and proposes a service blueprint for co-creating the value for rural maternity care services.

FB08
Ruyi Zaal, Fourth Floor
Smart Healthcare Service Management
Invited: Health Operations Management
Invited Session
Chair: Lindu Zhao, Southeast University, Nanjing, 210096, China, ldzhao@seu.edu.cn
Co-Chair: Xiangpei Hu, PhD, Dalian University of Technology, No. 2 Linggang Road, Ganjingzi District, Dalian, 116024, China, drhxp@dlut.edu.cn
1 - Survival Probability Analytics Based Solutions for Prehospital Emergency Care Coordination
Ke Wang, Southeast University, Nanjing, 211189, China, kirkk66@163.com, Lindu Zhao
Taken sudden cardiac death in home health care as example, this paper proposes survival probability analytics based solutions for prehospital emergency care coordination. A multi-stage, multi-agent, multi-level and coordinated care model driven by telemedicine is optimized and proved to improve survival rate significantly.
2 - Membership of Medical Service Supply Chain Based on Health Data Bank
Lisa Xie, Southeast University, 2 Southeast University Road, Nanjing, 211189, China, lisa.abcld234@foxmail.com, Lindu Zhao
In the medical service supply chain where there is a health data bank, by processing health data from health data providers, the Health Data Bank can provide an optimal plan that health data users need. This paper aims to use game theory to study the relationship between health data providers and users in the above supply chain.
3 - Coordinate Pricing of Drugs Home Delivery under “Order Online, Delivery by Pharmacies” Strategy
Lindu Zhao, Southeast University, 2 Sipailou, Nanjing, China, ldzhao@seu.edu.cn, Ge Yang
To realize low-cost and qualified pharmaceutical home delivery, especially for the acute patients, this paper studies the coordinate pricing of normal delivery and urgent express under “Order online, Delivery by pharmacies” strategy. Based on the time sensitivity of patients utility and delivery cost, we design the optimal profits sharing contract.
4 - A New Order Fulfillment Model of Online Pharmacy Store
Mintang Huang, North China Electric Power University, 2 Beinong Road, Beijing, 102206, China, hmf1006@163.com, Xiangpei Hu
Drug online retailing has become popular with China’s health-care reform, which directly results in the separation of drug prescribing and drug selling. How to deliver drugs timely and efficiently is a logistic challenge for drug online retailers. We propose to combine online and offline pharmacy stores. Customers can make orders online while pick up their drugs at stores. Thus, we propose an order fulfillment model in which a community pharmacy operates both as an experiencing site of pharmaceutical service and a distribution station. We know the effectiveness of the model as it helps better fulfill orders and improve customer experience.

FB09
Van Rijkevosel Zaal, Fourth Floor
Scheduling and Planning XII
Contributed Session
Chair: Masoumeh Kazemi Zanjani, Concordia University, 1515 St Catherine Street W, (EV4.243), Montreal, QC, H3G 1M8, Canada, kazemi@encs.concordia.ca
1 - Cyclic and Acyclic Rosters for General Medicine Physicians
Thomas Adams, University of Auckland, Level 3, Uniservices House, 70 Symonds Street, Auckland, 1142, New Zealand, tada955@aucklanduni.ac.nz
Cyclic rosters guarantee an equitable distribution of shifts in the long term, but not if a small and fractional number of cycles are performed. This type of situation arises when rostering general medicine physicians at Auckland Hospital. The difference between cyclic and acyclic rosters, and the effects of the hospital’s roster rules are examined in this setting.
2 - Adaptive Acyclic Specialist Rostering with Integer Programming
Monique Bakker, PhD Candidate, City University of Hong Kong, 88 Tai Chee Avenue, Flat B 2/F Mo Kwan House, Hong Kong, Hong Kong, moniquebakker121@gmail.com, Jin Wang, Kwok-Leung Tsui

We address the problem of assigning heterogeneous medical specialists to daily activities, subject to variability in their availability and a large set of real-life constraints. We use a patient-centric multi-appointment flow perspective: a unique on-par objective function minimizes deviations from average values, for the number of instances of each activity-specialist combination. Formulated as Integer Programs, all problem instances are solved to optimality in under 6 seconds on a normal desktop computer, with a commercial solver. The resulting rosters outperform traditional, manually constructed cyclic rosters in our simulation, in terms of patient access time and service levels.

3 - Physician Scheduling under Uncertainty in Ambulatory Polyclinics
Masoumeh Kazemi Zanjani, Associate Professor, Concordia University, 1515 St Catherine Street W, (EV4.243), Montreal, QC, H3G 1M8, Canada, kazemi@encs.concordia.ca, Mohammad Tohidin, Ivan Contreras

We propose a multi-stage stochastic program (SP) for integrated physician and clinic scheduling in polyclinics under random patient flow, treatment times, and physicians absenteeism. Assigning on-call physicians to shifts and extending shift duration are among the recourse actions envisaged to protect the schedule against uncertainty. It is demonstrated that the model is equivalent to a two-stage SP with a large number of scenarios. Sample-Average Approximation is thus implemented to obtain a feasible schedule. The proposed scheduling tool is applied to a real polyclinic in Montreal, Canada.

FB10 Plate Zaal, Fourth Floor
Quality and Safety I

Gopalakrishnan Narayanamurthy, IIM Kozhikode, FPM Office, IIM Kozhikode, IIM Campus P.O., Kunnammalam., Kozhikode, 673570, India, gnarayan@iimk.ac.in, Rachna Shah

In general, facilities are inspected by regulatory agencies to check the compliance status on certain specific pre-defined standards. Based on the scope and severity of the non-compliance observed, inspectors impose penalties to threaten and push the facility towards compliance. In this study, an attempt is made to disentangle the impact of having a penalty and that of the magnitude of penalty on the future quality of care delivered. Through this attempt, we will be able to understand the role played by the magnitude of penalty imposed.

2 - Reducing Potential Human Errors in Hospitals using FMEA Method under Fuzzy Environment
Reza Fattahi, PhD Student, Islamic Azad University, Science and Research Branch, Tehran, Iran, Islamic Republic of, e.reza.fattahi@gmail.com, Roya Soltani, Ehsan Rashidzadeh, Seyedhadi Hosielini

Failure mode and effect analysis (FMEA) is an appropriate method to assess risks in hospitals. One of the main problems regarding hospitals is the hazards caused by potential errors of doctors and personnel. In this research, the potential human errors in hospitals are reduced by a new FMEA method under fuzzy environment. Eventually, hospital of Kerman is considered as a case study to demonstrate applicability and benefits of the proposed fuzzy FMEA method.

3 - Assessment of Quality of a Health Care Delivery System in a Hospital in India: A Bayesian Causality Model
Abhik Patra, Research Scholar, Indian Institute of Technology Kharagpur, Department of Industrial and Systems Engineering, IIT Kharagpur, kharagpur, 721302, India, abhikmechanical@gmail.com, Pradip Kumar Ray

The quality of the healthcare delivery system in a hospital is based on the stakeholder perspectives and their interaction effect. The objective of the study is to explore the stakeholder's interaction effect on the quality of care based on conditional probability in the Indian context. Data collected through interview of stakeholders are analysed to identify critical quality attributes and their dimensions affecting the healthcare delivery system of hospitals in India. A Bayesian causality model is prepared to assess the quality of care as provided by a particular hospital.

4 - Reagent Lot Verifications in Clinical Laboratories
Chin Hon Tan, National University of Singapore, 1 Engineering Drive 2, Department of Industrial and Systems Engineering, Singapore, 117576, Singapore, icts@nus.edu.sg

It was recently reported that a systematic drift in a hormonal test was undetected across many years, resulting in missed diagnoses and inappropriate clinical decisions over that period. It was discovered that this happened because existing procedures are unable to capture significant differences that arise as a result of non-significant shifts that accumulate over time. This project aims to prevent the occurrence of similar incidents by improving the existing procedures used to validate reagent lot-to-lot changes in clinical laboratories.

FB11 Van der Vorm Zaal, Fourth Floor
Insurance I

1 - A Dynamic Programming Approach for Auditing Health Insurance Claims
Fletcher Lu, Associate Professor, University of Ontario Institute of Technology, Faculty of Business and IT, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada, fletcher.lu@uoit.ca

We studied applying a dynamic programming approach with Markov Decision processes to health insurance claims records provided by two insurance companies to search for invalid health claims. Our objective was to both efficiently uncover new fraud claim patterns and improve the efficiency of their existing fraud searches. Our modifications to their processes and uncovered new fraud cases were validated using a year of private prescription drug insurance claims involving over 5 million records. Our improvements resulted in tens of thousands of dollars in recovered funds.

2 - Designing Service Machine for Reducing Information Asymmetry in Health Insurance
Mohd Zuhair, Research Scholar, IIT Kharagpur, Kharagpur, 721302, India, md.zuhair.cs@gmail.com, Ram Babu Roy, Paul M Lilfrank

Service machine is a metaphor for implementing the machine design concepts into service production system. Health insurance service in India is inefficient primarily due to information asymmetry. It affects access, variety and specialization in health insurance service. We propose the application of service machine concept to reduce the information asymmetry.

3 - A Research on Patients' Willingness to Pay of Outpatient Co-payment and Hierarchical Health-seeking Behavior
Yen-Ping Fang, National Taiwan University of Nursing and Health Services, Taipei City, Taiwan, welhsu@ntuhs.ndtu.edu.tw, Wei Hsu, Yun-Ting Huang

Previous studies had diverse suggestions on the influence of higher co-payment to hierarchical health-seeking behavior. This study investigated patients’ Willingness to Pay (WTP) of the outpatient co-payment for implementing hierarchical medical system and tested the impact of WTP to hierarchical health-seeking behavior by 971 patients of an academic medical center in Taiwan. The result showed that the average WTP of the outpatient co-payment for academic medical centers amounted to NT$443.59 (around US$ 15), higher than the current amount (NT$360, around US$12). The WTP of the outpatient co-payment had significantly positive impact to hierarchical health-seeking behavior.

4 - Technology, Cost and Health-insurance Policy Impact Customers’ Perceptions of on Quality of Care
Rohit Verma, Dean of External Relations and Professor, Cornell University, MVR 3250, Ithaca, NY, 14853, United States, rv54@cornell.edu, Lu Kong, Hessam Sadatsafavi

NY state residents’ perceptions of healthcare survey was conducted. Key findings: 1. The majority of respondents have a positive view of computer use by physicians; they prefer to use an outpatient clinic outside of hospital to receive outpatient care. Among all concerns regarding U. S. healthcare, the cost of care (39%) is the biggest concern, followed by government policy regarding healthcare (27%), and specialized treatment (8%); quality of hospitals is the least concerned (less than 1%).
1 - Cluster Analysis of Objectively Measured Physical Activity Patterns in Women
Yoshimi Fukuoka, University of California, San Francisco, San Francisco, CA, 94118, United States, Yoshimi.Fukuoka@ucsf.edu, Mo Zhou, Eric Vittinghoff, William Haskell, Ken Goldberg, Anil Aswani
The aims of this report are to identify clusters of women living in California based on accelerometer measured raw metabolic equivalent values (METSs) and a normalized version of the METs ≥ 3 data and to compare sociodemographic and cardio metabolic risks among these identified clusters. 215 women wearing an accelerometer for at least 8 hours per day for the last 7 days prior to the randomization visit were analyzed. A K-means clustering method, the Lloyd’s algorithm, was used. To choose the number of clusters, we used the elbow method, looking at the percentage of variance explained as a function of the number of clusters.

2 - Adaptive Message Optimization for Fitness Tracking
Yonatan Mintz, UC Berkeley, 1822 Francisco St., Apt 10, Berkeley, CA, 94703, United States, ymintz@berkeley.edu, Anil Aswani, Philip Kaminsky, Elena Flowers, Yoshimi Fukuoka
Exercise programs with personal reminders are some of the most effective ways to treat sedentary lifestyles. Despite the prevalence of personal fitness tracking, many individuals have a hard time adhering to these programs since they may recommend a person exercise during times inconvenient for their schedule or provide ineffective motivation. In this talk, we address this problem by leveraging the data and infrastructure of mobile fitness tracking to personalize exercise programs for participating individuals. We develop a multi-armed bandit approach to adaptively learn each participant’s exercise preferences to personalize their exercise programs and increase adherence.

3 - Efficient Discovery of Responses of Proteins to Compounds using Active Learning
Yan Li, IBM, Yorktown Heights, NY, United States, ynl890410@gmail.com
High-throughput compound screening is time and resource consuming. We use active learning methods to assist the selection process by focusing on areas of structural novelty. One critical feature of these techniques is their ability to learn through sequential feedback. Through simulated experiments, we show that active learning algorithms have the potential to reduce costs and save precious materials.

4 - Analysis of a Health Program Effects on Older Diabetes Patients
Shinyi Wu, University of Southern California, 3715 McClintock Avenue, GER 240 C, Los Angeles, CA, 90089, United States, shinyiwu@usc.edu
Mobile technology is increasingly adopted by older adults but the potential to improve their health is underutilized. This presentation describes a program that tested using this technology with a homegrown diabetes self-care app for older adults. In an experimental trial, 237 adults aged 55 and above with type 2 diabetes participated in 8-week sessions with college students coaching them in learning the technology and chronic disease self-management at a general hospital in Taiwan. The app usage patterns and the program effects are analyzed with implications for data science.

1 - Eliciting Lipid Management Guidelines’ Valuation of Future Life by Inverse Optimization
Emine Yaylali, Istanbul Technical University, Istanbul, Turkey, emineyaylali@itu.edu.tr, Murat Kurt, Osman Yalın Ozalıün
Discounting is essential to designing long-term policies. We use inverse optimization to elicit discount factors that offset appropriately the benefits and side-effects of statins from future to present for Type 2 diabetes patients. Our approach aims to make national lipid management guidelines non-dominated solutions of a Markov decision process with respect to QALYs and long-term cardiovascular risk. Using real data we present the results for several national guidelines and make comparisons.

2 - Finding Empirical Evidence for the Impact of Surgery Sequencing on Non-operative Time
Brecht Cardoen, Ku Leuven, Naamsestraat 69, Leuven, 3000, Belgium, Brecht.Cardoen@kuleuven.be, Mehmet A. Begen, Carla Van Riet, Johannes De Smelt
We explore to what extent the sequencing of surgeries might impact the non-operative time in the OR, as this might have consequences for surgery scheduling practice to improve performance measures. We report on insights from data of a large Belgian hospital and differentiate between an outpatient and inpatient setting.

3 - Wait Times for Five Most Prevalent Cancer Types in Ontario
Amir Rastpour, Ivey Business School, 1255 Western Road., London, ON, N6G0N1, Canada, rastpour@ualberta.ca, Mehmet A. Begen, Greg Zaric
We use administrative data from The Ontario Cancer Data Linkage Project (cd-link) to analyze how waiting times, the period from diagnosis to the first treatment (surgery, chemotherapy, radiotherapy), have changed from 2002 to 2012 for patients with five most prevalent cancer types in Ontario. Our initial findings show that, although the mean and median waiting times have increased for some cancer and treatment types, the coefficient of variation has consistently improved over time, indicating that the predictability of the treatment time has improved over the study period.

Friday, 11:35am - 1:05pm

1 - Whole Blood or Apheresis Donations? A Multi-objective Stochastic Optimization Approach
Sally C. Brailsford, University of Southampton, School of Management, Southampton, S017 1BJ, United Kingdom, s.c.brailsford@soton.ac.uk, Andres F Osorio, Honora K Smith
Blood supply chain managers face the difficult strategic problem of choosing the best combination of technologies for collection and processing, as well as the difficult operational problem of assigning donors to collection methods. The use of deterministic demand forecasts is rarely adequate and a robust decision must consider variability in demand as well as potentially conflicting objectives. This paper presents a multi-objective stochastic ILP model to support such decisions, illustrated using real data from Bogota, Colombia.
INFORMS HEALTHCARE – 2017

FC04

Hudig Zaal, Third Floor
Data Analytics and Machine Learning IX

Chair: Maria Alejandra Wilches Mogollon, Universidad de los Andes, Cra 1 Este 19A - 40, Bogotá, 11171, Colombia, ma.wilches529@uniandes.edu.co

1 - Incidence and Mortality of Public Hospitalizations for Stroke in Brazil Between 2009 and 2015
Silvio Hamacher, Associate Professor, PUC-Rio, Rio de Janeiro, Brazil, hamacher@puc-rio.br, Igor Peres, Janaina Marchesi, Lella Dantas

Stroke is the third major cause of death in the world. This study evaluates the incidence and mortality rates in Brazil between 2009 and 2015, using hospitalizations data. We made a descriptive and statistical analysis using chi-square test and multiple logistic regression. The stroke hospitalizations increased 17% and the mortality decreased 2%. The incidence increased by 14%, 19% and 30% for the adult, elderly and elderly over 85 years, respectively, which is related to the population’s aging.

2 - Digital Divide in Online Health Utilization in China – A Case Study of Geographic Health Analytics
Haijing Hao, Assistant Professor in Health Information Systems, University of Massachusetts-Boston, 12 Inman Street Apt 31, Cambridge, MA, 02139, United States, haijing.hao@umb.edu, Haibo Hao

The present study intends to explore what factors may have an impact on online health utilization in China by examining various economic-related variables. We use Tableau mapping features to illustrate the geographical visualization and also run quantitative fixed effect regression models. Our preliminary results show that percentage population that can access the Internet of a province in China has a statistical significant impact on the online health utilization of that province.

3 - Quantifying Uncertainty about Future Antimicrobial Resistance with Structured Expert Judgment
Abigail Colson, Research Associate, University of Strathclyde, Glasgow, United Kingdom, abigail.colson@strath.ac.uk, Tim Bedford, Sumanth Gandra, Ramanan Laxminarayan, Itamar Megiddo, Alec Morton

Antibiotic resistance is a major global concern. Although many countries collect resistance surveillance data, the large number of factors that influence the emergence and spread of resistance makes it extremely difficult to translate historical data into future predictions. To bridge the gap between existing surveillance data and the needs of decision makers, we use Cooke’s classical model of structured expert judgment to quantify uncertainty about future resistance rates for select pathogen-antibiotic pairs in several European countries.

4 - Improving Cervical Cancer Screening Policies in Colombia with Data Analytics
Maria Alejandra Wilches Mogollon, M.Sc. Student, Universidad de los Andes, Cra 1 Este 19A - 40, Bogotá, 11171, Colombia, ma.wilches529@uniandes.edu.co, Raha Akhavan-Tabatabaei, Daniel Felipe Otero, Ivan Mura

Medical records, demographic, socio-economic and clinical data help understand population dynamics and chronic disease epidemics, such as cervical cancer. Harnessing the wealth of information contained therein allows developing models to measure and compare the impact of public health policies. We apply data analytics techniques on Colombian data to tune the parameters of a stochastic model that allows comparing different cervical cancer screening policies, and then to define an epidemiological model that predicts the impact of screening policies for the whole population.

FC03

Zeelenberg Zaal, Second Floor
Challenges & Research Directions in Kidney Exchange Programs

Invited: Public Health and Policy Making Invited Session
Chair: Itai Ashlagi, Stanford University, Stanford, CA, 94305, United States, iashlagi@stanford.edu

1 - Global Kidney Exchange and Deceased Donor-initiated Nonsimultaneous Extended Altruistic Donor Chains
Michael A Rees, Chief Executive Officer, Alliance for Paired Donation, P.O. Box 965, Perrysburg, OH, 43552, United States, Michael.Rees2@utoledo.edu

This presentation examines two new approaches aimed to expand the benefits of kidney exchange. Global Kidney Exchange offers the opportunity to utilize the mechanism of kidney exchange to overcome financial barriers to kidney transplantation. Deceased donor-initiated nonsimultaneous extended altruistic donor (NEAD) chains expand kidney exchange by starting NEAD chains with deceased donor kidneys. This presentation will explore the ethics and efficacy of these novel approaches to produce more kidney transplants and reduce the personal and economic burden caused by ESRD.

2 - Misaligned Incentives in Kidney Exchange
Itai Ashlagi, Stanford University, Department of Management Sci. and Engr., Stanford, CA, 94305, United States, iashlagi@stanford.edu

While a market for kidney exchange has grown in recent years the number of transplants from kidney exchanges has stagnated in the last few years. Focusing on the U.S. market, we use administrative records to document that: (1) the market is fragmented across many competing exchange programs, (2) participants in the largest exchange program are adversely selected, (3) smaller exchange programs conduct inefficient exchanges. We propose a supply and demand model to explain how these outcomes can arise as equilibrium behavior, due to the social and private incentives of hospitals being misaligned. We use the model and data to develop simple and efficient alternative mechanisms.
2 - Incentivizing Supply Chain Resiliency to Prevent Drug Shortages

Emily L. Tucker, PhD Student, University of Michigan, 1205 Beal Ave, Ann Arbor, MI, 48109, United States, eltuck@umich.edu, Mark S Daskin, Wallace J Hopp, Burgunda V Sweet

Drug shortages have become a public health crisis in the United States. Many shortages are caused by disruptions to lean supply chains of generic, difficult to manufacture drugs. Supply chain design and inventory decisions are directly affected by market conditions and FDA policies. We use a two-stage, multi-period stochastic programming model to determine how resiliency decisions of a profit-maximizing firm change based on underlying market conditions and discuss implications for public policy.

2 - Impact of Congestion on Healthcare Outcomes

Huan Zheng, SJTU, Management Science Department, 535 Fa Hua Zhen Rd, Shanghai, China, zhenghuan@sjtu.edu.cn, Hailye Yu, Jifeng Luo, Panpan Wang

This paper empirically studies how congestions in hospitals affect health care outcomes. We utilize the number of new patients admitted every day and the number of inpatients to measure the degree of congestions. A fixed effect model was used for analyzing the discharge records of 189,740 patients from a public hospital in Shanghai during 2011-2014. The connections between congestions in operations and the mortality rate, readmission and length of postoperative hospital stay will be reported.

2 - Optimization for the Locations of Ambulances under Two-stage Life Rescue in Emergency Medical Service: A Case Study in Shanghai, China

Dapeng Yang, Tongji University, Siping Road 1500,Tongji Building, Shanghai, China, yangdapeng081219@126.com, Qiang Su, Ming Liu

Ambulance service planning is a branch of healthcare optimization. In this paper, we study the problem based on the demand for Emergency Medical Services(EMS) in Songjiang District,China, followed by the joint planning of EMS management, which typically consist of emergency location planning and patients assignment to hospitals considering patients’ injury degree and the difference in emergency calls over a day. Our results show that the demand coverage and response time can be substantially improved by relocating the current facilities without the need for additional resources.

3 - Capacity Allocation in a Service System: Parametric and Data-driven Approaches

Guanliian Xiao, Technische Universiteit Eindhoven, Eindhoven, Netherlands, xglian@gmail.com, Liping Liang, Hengqing Ye

We study the capacity allocation problem for a service system that serves its customers with a deterministic service time under a service level requirement. The service level is measured by the probability of customers waiting longer than a pre-specified duration. We model the system as an M/D/1 or a G/D/1 queue and examine two approaches to determining the capacity: a parametric approach based on the effective bandwidth theory and a data-driven approach based on the sample average approximation. We conduct a numerical study to investigate the effectiveness of these two approaches, and find that the data-driven approach is more streamlined, accurate, and widely applicable.
3 - Implication of Codified Knowledge Sharing on Operational Failures in Healthcare

Mecht Can Emre Simsekler, Assistant Professor, KUSTAR, Industrial & Systems Engineering Department, Abu Dhabi, 127788, United Arab Emirates, mecht.canemre@kustar.ac.ae, Bilal Gokpinar

Focusing on codified knowledge sharing among healthcare personnel in the form of written guidance documents, we examined the role of codified knowledge on operational failures in healthcare. We used a unique dataset from hospitals in England and employed text-mining techniques to investigate the impact of documents on operational failures.

1 - Value Drivers in Prenatal Testing Services

Henni Tenhunen, Doctoral Candidate, Aalto University, Institute of Healthcare Engineering, Management and Architecture (HEMA), P.O. Box 15500, FI-00076 AALTO, Finland, Espoo, Finland, henni.tenhunen@aalto.fi, An Chen, Karita Reijonsaari, Paul Lillrank

For the purpose of identifying value drivers in maternal care service context, we interviewed 27 screen-positive women who participated in prenatal testing in Finland. Results suggest that women’s perceptions of the value of the service are strongly related to how well the pre-test counseling about the different options, the communications with the midwives, and the convenient service delivery alleviated negative emotions such as anxiety, worry, and lack of control.

2 - Improving Discharge Process for Cashless Patients in Indian Multi-speciality Hospitals using Simulation Approach

Sudipendra Nath Roy, Assistant Professor, Koc University, Istanbul, Turkey, betuncay@ku.edu.tr, Ozden F. Gur Ali

In this paper, we analyze physician prescribing behavior of antibiotics and how it varies with patient characteristics, diagnosis and geography. We evaluate the impact of a policy intervention to reduce irrational antibiotic use on physician visits by patients, physician prescribing and antibiotic drug sales. Patient insurance is used as an indicator of a change in patient behavior. We examine antibiotic prescribing behavior of physicians in terms of diagnosis, patient demographics, region, physician specialty and patient insurance information, and the observed policy effect in different patient and physician groups, using the Pharmaceutical Index and the Prescription Index by IMS Health.

3 - Strategic Customer Behavior in Buying Insurance and Choosing Private Treatment

Yiannis Dimitrakopoulos, Post-Doc Researcher, University of Athens, 29A Kykladon Str., Athens 11361, Greece, dimi@iap.uoa.gr

We analyze equilibrium behavior and optimal strategies for customers who decide whether to buy a medical insurance or not for receiving medical treatment in a private provider instead of joining the public healthcare system, considering their income, cost of treatment and the level of congestion in public facilities. We model the public system as a Markovian queue, whereas the private provider can be considered as a costly outside option with no waiting for treatment.
1 - HPV Vaccination Uptake Policy Analysis with a System Dynamics Approach
Nasim S. Sabounchi, State University of New York at Binghamton, 4400 Vestal Parkway East, P.O. Box 6000, Systems Science and Industrial Engineering, Binghamton, NY, 13902, United States, sabounchi@binghamton.edu, A. Serdar Atav, Nasser Sharareh
This study demonstrates how psychological, parental perceptions, cultural, socio-economic and health policy factors influence the completion of the recommended series of HPV vaccinations among adolescent boys. Despite availability of HPV vaccines, in 2014, only 22% of boys aged 13 - 17 had received all 3 doses. A system dynamics approach and the constructs of the Health Belief Model were adopted to develop a simulation platform and investigate the complex interactions of different key factors on the vaccine uptake. Our results help to identify the most effective interventions to improve HPV vaccination rates.

2 - An Agent-based Model for Mumps: Does Separating Vaccinated and Unvaccinated Students in Schools Result in Better Health Outcomes?
Liulai Hatter, Concordia University, 1515 Saint-Catherine Ouest, EV S3.330, Montreal, QC, H3G 2W1, Canada, liulaihatter@gmail.com, Ketra Schmittlein, Hossein Moosavi
A rise in unvaccinated children and subsequent upick in vaccine-preventable diseases has led to a vigorous public debate regarding vaccination status. To investigate different policies in managing mumps, we developed an agent-based model to simulate outbreaks and evaluated how key disease dynamics are impacted by a policy of separating vaccinated and unvaccinated children into different schools when used concurrently with physical distancing, school closure, and mandatory isolation strategies.

3 - Introducing the Pneumococcal Conjugate Vaccine in India's National Immunization Programme: An Economic Analysis using Agent-based Modelling
Itamar Megiddo, Chancellor Fellow, Lecturer, University of Strathclyde, Glasgow, United Kingdom, itamar.megiddo@strath.ac.uk, Itamar Megiddo, Chancellor Fellow, Lecturer, Center for Disease Dynamics, Economics & Policy, Washington, DC, United States, itamar.megiddo@strath.ac.uk, Eli Klein, Ramanan Laxminarayan
Pneumococcal pneumonia causes over 100,000 child deaths in India annually. Uncertainty regarding the impact of introducing the pneumococcal conjugate vaccine and its high cost have been a concern, particularly after the proposed GAVI alliance support ends. We evaluate disease transmission and the vaccine’s disease and economic impact in an agent-based simulation model representative of the Indian population and healthcare system. Despite its high cost, introducing the vaccine averts a significant number of deaths and protects poor populations from financial risk.

4 - On Optimal Timing of Influenza Vaccine Production under Yield Improvement Strategies
Alexandar Angelus, Assistant Professor, The University of Texas at Dallas, Jindal School of Management, 800 West Campbell Road SM 30, Richardson, TX, 75080, United States, alexandar.angelus@utdallas.edu, Ozalp Ozer
We develop a multi-stage dynamic program to determine the optimal timing of large-scale influenza vaccine production, when the vaccine’s uncertain yield can be improved both during the development phase and during the production phase. We determine the structure of the optimal stopping policy for launching vaccine production. That structure is found to depend on the relative effectiveness of the two yield improvement strategies. When yield improvement during development is more effective, the myopic 1-Step Look-Ahead policy is always optimal. We also prove that the optimal time to bring influenza vaccine to the market is decreasing in the effectiveness of yield improvement during production.
Session Chair Index

A	Agrawal, Deepak	WA09	
	Akhtar, Pervaiz	WB04	
	Akin, Faruk	FB04	
	Alagoz, Oguzhan	WC06	
	Alnsour, Yazan	TB01	
	Anderson, Edward	TB03, FA03	
	Andersson, Henrik	TA02	
	Angelus, Alexandar	FC12	
	Anjomshoa, Hamideh	TA10	
	Ashlagi, Itai	FA13, FC03	
B	Bakhtiari, Behrouz	WA04	
	Balasubramanian, Hari	TC06	
	Ban, Gah-Yi	TA13	
	Barnes, Sean	WC07	
	Berrane, Fatima Zahra	FC13	
	Bastani, Hamsa	WB13	
	Batt, Robert	TA07	
	Bavafa, Hessam	WB01	
	Bertsinas, Dimitris	TC13, Plenary	
	Braaksma, Aleida	TC08	
	Brandeau, Margaret	WC13	
C	Carrasco, Rodrigo	WA02	
	Ceran, Yasin	FA01	
	Cidoncha, Alinize	WA11	
	Cildoz, Marta	FC09	
	Corcoran, Taylor	TA05	
D	Dai, Tinglong	TB07	
	Dehghani, Maryam	WA10	
	Dekker, Rommert	WC10	
	Delen, Dursun	WC04	
	Demirtas, Derya	WC02	
	Denton, Brian	Plenary	
	Deo, Sarang	WB07	
	deVries, Harwin	TB12	
	Dimitrakopoulos, Yiannis	FC11	
	Du, Gang	FA08	
G	Ganju, Kartik	WB08	
	Gartner, Daniel	FC01	
	Geng, Na	WA05	
	Gentry, Sommer	TA11	
	Goh, Joel	TC03, TC05	
	Gongora Sarrantz, Gabriela Noemi	TB02	
	Gopalappa, Chaitra	FA06	
	Griffin, Jacqueline	WB10	
	Grullhav, Anders Nordby	WB09	
	Gunes, Evrim	WA01	
	Gupta, Diwakar	WB03	
	Gur Ali, Ozden	FA04	
H	Hu, Xiangpei	FB08	
I	Ivy, Julie	TB06, TC12	
J	Jacobson, Sheldon	TC04	
K	Kazemi Zanjani, Masoumeh	FB09	
	Keppo, Jussi	WC12	
	Khuntia, Jihan	TB01	
	Klyve, Kjarlan	Kastet	FB02
	Kong, Nan	TB08	
	Kortbeek, Nikky	TC09	
	Kucukyazici, Beste	WB08	
	Kwon, Juhee	FB01	
L	Lee, Eva	TB13	
	Li, Na	TB05	
	Lugovoi, Ivan	TB04	
M	Manzi, Sean	TA12	
	Marcano, Alejandro	WC11	
	Merdan, Selin	WB06	
	Munkhbat, Buynamemekh	FC06	
	Muzalyova, Anna	WB11	
	Myers, Robert	TC10	
N	Negoescu, Diana	TA03	
	Nenova, Zlatana	FB05	
	Nohadani, Omid	WA12	
P	Padman, Rema	TC01	
R	Ramdas, Kamalini	FB06	
	Rastpour, Amir	FB13	
	Rath, Sandeep	TB09	
	Reuter-Oppermann, Melanie	FC05	
	Rezaei, Mostafa	WB09	
	Rojas-Cordova, Alba	WB05	
	de Roedenbeke, Eric	Plenary	

S	S. Parthasarathy	FA10
	Samiedalouie, Saied	FA11
	Saria, Suchi	WA13
	Sarin, Rakesh	TC11
	Sava, M. Gabriela	WA06
	Scheinkler, David	FA12
	Schoenleider, Jan	FA05
	Shugar, Steven	TB10
	Silva Sotillo, Walter	WB12
	Skireld, Mohammed	TC02
	Song, Hummy	WC05
	Stanford, David	FA02
	Suen, Sze-chuan	TA06
T	Taghav, Majid	FA09
	Tan, Chin Hon	FB10
	Tenhunen, Henni	FC10
	Tesch, Alexander	TA09
V	van Brummen, Samuel	WC09
	Van de Klundert, Joris	FB03
	van Jaarsveld, Willem	TA08, FC08
	Verma, Rohit	FB11
	Verter, Vedat	WC03
W	Wang, Haiyan	WB02
	Wang, Jianjun	FA08
	Wieckowska, Barbara	TB11
	Wilches Mogollon, Maria Alejandra	FC04
	Wu, Shinyi	FB12
X	Xiao, Guanlan	TA08
	Xie, Xiaolei	TB05
	Xue, Wei Li	WB02
Z	Zaric, Greg	WB07
	Zenteno, Ana	WA08
	Zhang, Wenchang	TA04
	Zhao, Lindu	FB08
	Ziedins, Ilze	TA01, FC02
Teng, De TA01, TA05
Tenhunen, Henri FC10
Tesch, Alexander TA09
Tezcan, Tolga WC05
Tezcan, Tolga TA07
Tigli, Luca TB04
Ting, Hsu-I WB10
Tiwari, Vikram WA08
Tohidi, Mohammad FB09
Tourazis, Lakovos WB06
Tozan, Hakan WP01
Trichakis, Nikolaos WA08, WB13
Trikalinos, Tom TC13
Trockel, Mickey TC05
Tsai, Emily WB06
Tsai, Jui-Ying WC12
Tsai, Mei-Ting WC12, TA10, WA09
Tsai, Pei-Fang TB11
Tsui, Kwok-Leung FB09
Tubertini, Paolo TB09
Tucker, Anita WC05
Tucker, Emily FC06
Tuncay, Berna FC11
Tydesley, Scott TC08

U
Ugarph, Elizabeth TC08

V
V K, Sreekanth TC02
Valibeg, Nooshin WB10
van Brummelen, Samuel WC09
Van De Klundert, Joris WP01, TB12
van de Vrugt, Noelle FB02
van den Berg, Pieter WC02
van den Hurk, Katja WC09
van der Mei, Robert WC02
van der Schaar, Mihaela WA13
van Dijk, Nico WC09
Van Dyk, Liezl FC13
van Essen, Theresa WC02
van Haveren, Rens WA06
van Jaarsveld, Willem TA08
Van Oyen, Mark FA03
Van Riet, Carla TB09, FB13
Vandaele, Nico FC06
Vandery, Sonya WA04
Vargas, Luis G, WA06, FB05
Vasilakis, Christos WC03
Vayanos, Phebe WB13
Vaze, Vikrant FB06
Vera, Jorge WA02
Verduijn, Gerda WA06
Verma, Rohit FB11
Verter, Vedat WC03, FA05
Vidyashankar, Anand WC11
Villar, Sophia S. TA03
Visintin, Filippo TB04
Vittinghoff, Eric FB12

W
Wachtel, Guy TA02
Wagelmans, Albert P. M. TB12
Wallinga, Jacco WP01
Wan, Guohua TA08
Wang, Guihua WB07
Wang, Haibo TC04
Wang, Haiyan WB02
Wang, Hui-Min WA09
Wang, Jiana-Pu TA10
Wang, Jianjun FA08
Wang, Jin FB09
Wang, Ke FB08
Wang, Panpan FC08, FC13
Wang, Shan WB07
Wang, Yu FA08
Wang, Yuchen TC13
Wei, Xin TB13
Weinstein, Alex TC13
Weller-Ferris, Linda TB10
Wheeler, Michelle WB04
Wickowska, Barbara TB11
Wilches Mogollon, Maria
Alejandra FC04
Wilson, James WC08
Woodworth, Simon TC10
Wu, Chao TB10
Wu, Pan WB04
Wu, Shinyi TB07, FB12

X
Xiao, Guanlian FC08
Xie, Lisa FB08
Xie, Xiaolan WA05, TB05, TC04,
FA11, FA02, FA10
Xie, Xiaolei FA11
Xu, Ying TB02
Xu, Yuqian WB07
Xue, Weili WB02
Xujin, Pu TA08

Y
Yamada, Tetsuo FC10
Yan, Chongjun TA01
Yang, Dapeng FC08
Yang, Ge FB08
Yang, Julius WC05
Yang, Kum-Khiong WA09
Yankovic, Natalla WA02
Yapar, Ozge WB13
Yazlagadda, Vansu FA12
Yaylali, Emine FB13
Ye, Hengqing FC08
Yigit, Gökcem WP01
Yildiz, Özlem WC05
Yildiz, Zeynep G’kae WC12
Yoon, Soovin TA07

Yu, Haiyan FA04
Yu, Huiyue FC08
Yu, Jiun-Yu WP01, TA10
Yu, Vincent WB10
Yuan, Shasha WP01
Yunes, Tallys TC08

Z
Zacharias, Christos TC08
Zander, Anne TC08
Zargoush, Mojtaba WC12
Zaric, Greg FB13
Zayas-Caban, Gabriel TA07
Zeng, Yinlian TA10
Zengul, Ferhat TA04
Zenios, Stelanos TC03
Zenteno, Ana WA08, TC08
Zhan, Yan TA08
Zhan, Yan TA08
Zhang, Lianmin TA10
Zhang, Mellin TC05
Zhang, Qiang WP01
Zhang, Wenjiang TA04
Zhang, Wensi WC09
Zhang, Yiye FC01
Zhang, Yu FA08
Zhang, Zhenhuan TA03
Zhao, Lindu WB02, FB08
Zheng, Fanxu FA13
Zheng, Huan FC08
Zheng, Ronghuo TB07, FC01
Zheng, Zhichao WA09
Zhou, Daisy Ying TC13
Zhou, Mo FB12
Zhu, Cheng WB08
Zhuang, Weifen TA08
Ziedins, Ilze TA01, FA02
Zorc, Sasa WC03
Zuhair, Mohd FB11
Session Index

Wednesday, 8:30am - 10:00am
- WA01 Empirical and Experimental Research in Healthcare Operations
- WA02 ALIO Sponsored Session
- WA04 Data Analytics and Machine Learning I
- WA05 Stochastic Models for Hospital Operations Management
- WA06 Optimization Modeling for Medical Decision Making
- WA08 Data-driven Models in Health Care Operations
- WA09 Scheduling and Planning I
- WA10 Supply Chains I
- WA11 Medical Decision Making I
- WA12 Radiation Therapy Planning
- WA13 Machine Learning for Optimizing Healthcare Delivery

Wednesday, 10:30am - 11:30am
- Plenary Dimitris Bertsimas- Personalized Medicine: A Vision for Research and Education

Wednesday, 1:00pm - 2:30pm
- WB01 Empirical Healthcare Operations
- WB02 Healthcare Service Management
- WB03 Resource Allocation and Incentive Design in Healthcare settings
- WB04 Data Analytics and Machine Learning II
- WB05 Optimization Approaches for Healthcare Decision-Making under Uncertainty
- WB06 Optimization of Medical Decision Making for Chronic Diseases
- WB07 HAS Student Paper Competition
- WB08 Operations Research and Information Systems for Healthcare Efficiency
- WB09 Scheduling and Planning II
- WB10 Supply Chains II
- WB11 Medical Decision Making II
- WB12 Disease and Treatment Modeling I
- WB13 Data-Driven Algorithms for Healthcare Problems

Wednesday, 2:30pm - 3:30pm
- WP01 Poster session

Wednesday, 3:30pm - 5:00pm
- WC02 EMS Related Topics
- WC03 Operations Research for Chronic Care
- WC04 Data Analytics and Machine Learning III
- WC05 Managing Health Care Costs and Quality
- WC06 Under Uncertainty
- WC06 Panel Session: Developing Natural History Models for Medical Decision Making
- WC08 Mathematical Models of Sepsis and Hospital-Acquired Infections
- WC09 Scheduling and Planning III
- WC10 Supply Chains III
- WC11 Medical Decision Making III
- WC12 Disease and Treatment Modeling II
- WC13 Public Health Preparedness: Answering (Largely Unanswerable) Questions with Operations Research

Thursday, 8:30am - 10:00am
- TA01 Scheduling and Planning IV
- TA02 Emergency Medical Services I
- TA03 Data-driven Policies for Differentiated Care
- TA04 Data Analytics and Machine Learning IV
- TA05 Health Care Modeling
- TA06 Complications in Cost-effectiveness Analyses: Data Scarcity, Model Uncertainty, and Implementation Challenges
- TA07 Analyzing & Optimizing the Patient Path to Care
- TA08 Operating Room Scheduling I
- TA09 Scheduling and Planning V
- TA10 Supply Chains IV
- TA11 Organ Transplant
- TA12 Disease and Treatment Modeling III
- TA13 Advanced Data Analytics for Healthcare

Thursday, 10:30am - 12:00pm
- TB01 IT Enabled Patient Empowerment and Engagement
- TB02 Emergency Medical Services II
- TB03 Panel Session - Operations Management: Current Practice and its Implications for Policy
- TB04 Data Analytics and Machine Learning V
- TB05 Coordination and Optimization in Healthcare
- TB06 Maximizing Health under Constraints in Developing Countries
- TB07 Policy/Incentive Issues in Healthcare Operations
- TB08 Healthcare Operations Management Applications
- TB09 Scheduling and Planning VI
- TB10 Health Operations I
- TB11 Policy & Systems I
- TB12 Health and Humanitarian Logistcs
- TB13 Predictive Analytics for Biomedicine and Clinical Decision

Thursday, 12:00pm - 1:30pm
- Lunch Plenary - Erik Gerrissen & Eric de Roodenbeke- The INFORMS Contribution for the Health Systems and Hospitals of the Future

Thursday, 1:30pm - 3:00pm
- TC01 Healthcare Informatics
- TC02 Emergency Medical Services III
- TC03 Public Health: Models and Empirics
- TC04 Data Analytics and Machine Learning VI
- TC05 Patients, Physicians, and Their Interactions
- TC06 Data and Modeling Challenges in Low and Middle Income Settings
- TC08 Patient Scheduling and Assignment
- TC09 Scheduling and Planning VII
- TC10 Health Operations II
- TC11 Policy & Systems II
- TC12 Utilizing Data to Enhance Care Delivery
- TC13 Personalized Medicine via Cutting Edge Machine Learning

Thursday, 3:30pm - 4:30pm
- Plenary Dr. Brian Denton- Operations Research in Medicine: Past, Present and Future
Friday, 8:00am - 9:30am

FA01 How Technology and Analytics Create Value in Healthcare
FA02 Scheduling and Planning X
FA03 Operations Management and Systems Engineering Models for Policy
FA04 Data Analytics and Machine Learning VII
FA05 Resource Planning in Hospitals
FA06 Disparities
FA08 Scheduling Optimization for Healthcare Management
FA09 Scheduling and Planning IX
FA10 Emergency Medical Services IV
FA11 Simulation
FA12 Analytics Approaches to Personalizing Healthcare Delivery
FA13 Incentives in Healthcare

Friday, 11:35am -1:05pm

FC01 Health Care Analytics and Operations Management
FC03 Challenges & Research Directions in Kidney Exchange Programs - Placeholder for Ital's Session
FC04 Data Analytics and Machine Learning IX
FC05 Location Planning for General Practitioners
FC06 Disease Mitigation Planning
FC08 Operating Room Scheduling II
FC09 Scheduling and Planning XIII
FC10 Quality and Safety II
FC11 Insurance II
FC12 Disease and Treatment Modeling IV
FC13 eHealth & Telemedicine

Friday, 10:00am - 11:30am

FB01 Data Analytics for Healthcare Management
FB02 Scheduling and Planning X
FB03 COST Action ENC-KEP: State of the Art in European Kidney Exchange Programs
FB04 Data Analytics and Machine Learning VIII
FB05 Healthcare Analytics
FB06 Global Health/Low Income Settings
FB08 Smart Healthcare Service Management
FB09 Scheduling and Planning XII
FB10 Quality and Safety I
FB11 Insurance I
FB12 Harnessing Information and Communication Technology for Healthcare
FB13 Big Data Analytics in Health Care
Wednesday, July 26

<table>
<thead>
<tr>
<th>ROOM</th>
<th>TRACK</th>
<th>WA</th>
<th>PLENARY</th>
<th>WB</th>
<th>POSTER SESSION</th>
<th>WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcadis Zaal</td>
<td>2</td>
<td>10:30-11:30AM</td>
<td>ALIO Sponsored Session</td>
<td>Healthcare Service Mgmt.</td>
<td>EMS Related Topics</td>
<td></td>
</tr>
<tr>
<td>Zeelenberg Zaal</td>
<td>3</td>
<td>1-2:30PM</td>
<td>No Session</td>
<td>Resource Allocation & Incentive Design in HC Settings</td>
<td>Operations Research for Chronic Care</td>
<td></td>
</tr>
<tr>
<td>Hudig Zaal</td>
<td>4</td>
<td>2:30-3:30PM</td>
<td>Data Analytics & Machine Learning I</td>
<td>Data Analytics & Machine Learning II</td>
<td>Data Analytics & Machine Learning III</td>
<td></td>
</tr>
<tr>
<td>Van Reuningen Zaal</td>
<td>6</td>
<td></td>
<td>Optimization Modeling for Medical Decision Making</td>
<td>Optimization of Medical Decision Making for Chronic Diseases</td>
<td>Developing Natural History Models for Medical Decision Making</td>
<td></td>
</tr>
<tr>
<td>Willem Burger Zaal</td>
<td>7</td>
<td></td>
<td>No Session</td>
<td>HAS Student Paper Competition</td>
<td>No Session</td>
<td></td>
</tr>
<tr>
<td>Ruys Zaal</td>
<td>8</td>
<td></td>
<td>Data-Driven Models in Health Care Operations</td>
<td>OR & Information Systems for Healthcare Efficiency</td>
<td>Mathematical Mod. of Sepsis & Hospital-Acquired Infections</td>
<td></td>
</tr>
<tr>
<td>Van Rijkevorsel Zaal</td>
<td>9</td>
<td></td>
<td>Scheduling & Planning I</td>
<td>Scheduling & Planning II</td>
<td>Scheduling & Planning III</td>
<td></td>
</tr>
<tr>
<td>Plate Zaal</td>
<td>10</td>
<td></td>
<td>Supply Chains I</td>
<td>Supply Chains II</td>
<td>Supply Chains III</td>
<td></td>
</tr>
<tr>
<td>Van der Vorm Zaal</td>
<td>11</td>
<td></td>
<td>Medical Decision Making I</td>
<td>Medical Decision Making II</td>
<td>Medical Decision Making III</td>
<td></td>
</tr>
<tr>
<td>Mees Zaal</td>
<td>12</td>
<td></td>
<td>Radiation Therapy Planning</td>
<td>Disease & Treatment Mod. I</td>
<td>Disease & Treatment Mod. II</td>
<td></td>
</tr>
</tbody>
</table>

Thursday, July 27

<table>
<thead>
<tr>
<th>ROOM</th>
<th>TRACK</th>
<th>TA</th>
<th>TB</th>
<th>LUNCH PLENARY</th>
<th>TC</th>
<th>PLENARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Cappellen Zaal</td>
<td>1</td>
<td>8:30-10AM</td>
<td>Scheduling & Planning IV</td>
<td>IT Enabled Patient Empowerment & Engagement</td>
<td>The INFORMS Contribution for the Health Systems and Hospitals of the Future</td>
<td>Healthcare Informatics</td>
</tr>
<tr>
<td>Arcadis Zaal</td>
<td>2</td>
<td>10:30AM-12NOON</td>
<td>Emergency Medical Services I</td>
<td>Emergency Medical Services II</td>
<td>Dr. Erik Gerritsen Government of Netherlands</td>
<td>Emergency Medical Services III</td>
</tr>
<tr>
<td>Zeelenberg Zaal</td>
<td>3</td>
<td>12NOON-1:30PM</td>
<td>Data-driven Policies for Differentiated Care</td>
<td>Panel - Operations Mgmt.: Current Practice & its Implications for Policy</td>
<td>Dr. Eric de Roedenbeke CEO, International Hospital Federation</td>
<td>Public Health: Models & Empirics</td>
</tr>
<tr>
<td>Hudig Zaal</td>
<td>4</td>
<td>1:30-3PM</td>
<td>Data Analytics & Machine Learning IV</td>
<td>Data Analytics & Machine Learning V</td>
<td>Willem Burger Zaal</td>
<td>Data Analytics & Machine Learning VI</td>
</tr>
<tr>
<td>Schadee Zaal</td>
<td>5</td>
<td></td>
<td>Health Care Modeling</td>
<td>Coordination & Optimization in Healthcare</td>
<td>Patients, Physicians, & Their Interactions</td>
<td>Willem Burger Zaal</td>
</tr>
</tbody>
</table>

Panel - Operations Mgmt.: Current Practice & its Implications for Policy
- Dr. Eric de Roedenbeke
 CEO, International Hospital Federation
- Willem Burger Zaal
<table>
<thead>
<tr>
<th>Room</th>
<th>Track</th>
<th>FA 8-9:30AM</th>
<th>FB 10-11:30AM</th>
<th>PC 11:35AM-1:05PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Cappellen Zaal</td>
<td>1</td>
<td>How Technology & Analytics Create Value in HC</td>
<td>Data Analytics for Healthcare Management</td>
<td>Health Care Analytics & Operations Management</td>
</tr>
<tr>
<td>Arcadio Zaal</td>
<td>2</td>
<td>Scheduling & Planning VIII</td>
<td>Scheduling & Planning XI</td>
<td>No Session</td>
</tr>
<tr>
<td>Hudig Zaal</td>
<td>4</td>
<td>Data Analytics & Machine Learning VII</td>
<td>Data Analytics & Machine Learning VIII</td>
<td>Data Analytics & Machine Learning IX</td>
</tr>
<tr>
<td>Schadee Zaal</td>
<td>5</td>
<td>Resource Planning in Hospitals</td>
<td>Healthcare Analytics</td>
<td>Location Planning for General Practitionians</td>
</tr>
<tr>
<td>Van Beuningen Zaal</td>
<td>6</td>
<td>Disparities</td>
<td>Global Health/ Low Income Settings</td>
<td>Disease Mitigation Planning</td>
</tr>
<tr>
<td>Roga Zaal</td>
<td>8</td>
<td>Scheduling Optimization for Healthcare Management</td>
<td>Smart Healthcare Service Management</td>
<td>Operating Room Scheduling II</td>
</tr>
<tr>
<td>Van Rijckevorsel Zaal</td>
<td>9</td>
<td>Scheduling & Planning IX</td>
<td>Scheduling & Planning XII</td>
<td>Scheduling & Planning XII</td>
</tr>
<tr>
<td>Plate Zaal</td>
<td>10</td>
<td>Emergency Medical Services IV</td>
<td>Quality & Safety I</td>
<td>Quality & Safety II</td>
</tr>
<tr>
<td>Van der Vorm Zaal</td>
<td>11</td>
<td>Simulation</td>
<td>Insurance I</td>
<td>Insurance II</td>
</tr>
<tr>
<td>Mees Zaal</td>
<td>12</td>
<td>Analytics Approaches to Personalizing Healthcare Delivery</td>
<td>Harnessing Information & Communication Technology for Healthcare</td>
<td>Disease & Treatment Modeling IV</td>
</tr>
<tr>
<td>Van Weelde Zaal</td>
<td>13</td>
<td>Incentives in Healthcare</td>
<td>Big Data Analytics in Health Care</td>
<td>eHealth & Telemedicine</td>
</tr>
</tbody>
</table>

FRIDAY, JULY 28

The INFORMS Contribution for the Health Systems and Hospitals of the Future

- Dr. Erik Gerritsen, Government of the Netherlands &
- Dr. Eric de Roodenbeke, International Hospital Federation

- Willem Burger Zaal

Operations in Medicine: Past, Present & Future

- Brian T. Denton, University of Michigan, Ann Arbor, MI
- Willem Burger Zaal